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THERMODYNAMICS 

TUTORIAL 9 

 

TURBINE THEORY 

 

This tutorial is set at NQF Level 5 to 6 

 

On completion of this tutorial you should be able to  

 

 Explain the principles of Impulse and Reaction Turbines. 

 Explain and use Vector Diagrams to determine the power produced by flow over the turbine vanes. 

 Define the parameters needed to determine the performance of turbines. 

 Calculate the performance of turbines. 
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1. Introduction 

 

The following is mainly about steam turbine design and theory but it generally applies to gas turbines as 

well bearing in mind the methods of determining their properties are different. Surprisingly there seems to 

be very little information available on the design and construction of gas turbines. 

 

A Brief History 

 

120 B.C. Hero of Alexandria constructs a simple reaction turbine. 

This was constructed from a spherical vessel with two spouts as shown. Heat turned the water inside into 

steam that escaped through the spouts and made the vessel rotate. 

1629 Branca, an Italian, created the first impulse turbine. 

Steam issuing from a nozzle struck the vanes on a wheel and made it revolve. 

Windmills, developed in medieval times formed the main source of power for centuries. 

1884 Charles Parsons developed the first practical reaction turbine. This machine developed around 7 kW 

of power. 

1889 De Laval  developed the first practical impulse turbine capable of producing around 2 kW of power. 

Others who developed the impulse turbine were Rateau in France and Curtis in the U.S.A. 

          

 

 

Brancas‘s Turbine  (Impulse)         Figure 1        Hero’s Turbine (Reaction) 

 

Turbines are generally classified as either impulse or reaction. This refers to the type of force making it 

rotate. 

 

2. Impulse Theory 

 

2.1 General Theory 

 

Impulsive Forces are exerted on an object when it diverts or changes 

the flow of a fluid passing over it. A very basic impulse turbine is the 

windmill and this converts the kinetic energy of the wind into 

mechanical power. Consider a rotor with vanes arranged around the 

edge. Fluid is directed at the vanes by a set of nozzles.  

In the case of steam turbines the symbol used for steam velocity is C 

(the S.I. symbol specified for vapours). C will be used from this point 

forward. 

 

        Fig. 2 
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All the pressure is converted into velocity (kinetic energy) in the nozzles. There is no pressure drop over the 

row of moving vanes (or blades). The resulting force on the vane is entirely due to the change in the 

momentum of the fluid and this is entirely due to the change in direction as the steam (or gas or liquid) flows 

over the blades. It is of interest to note that the name impulsive comes from Newton’s second law of motion. 

Impulse = change in momentum 

 

Impulsive force = rate of change in momentum. 

 

F     C 

  is the mass flow rate in  g/s and C is the change in velocity of the fluid. This is a vector quantity and 

may be applied to any direction. If we make C the change in velocity in the direction of motion we obtain 

the force making the rotor turn. This direction is usually called the whirl direction and Cw means the 

change in velocity in the whirl direction. (It is tangential in the rotor illustrated). 

F    Cw 

Suppose the vanes to be rotating on a mean circle of diameter D at N rev/s. The linear velocity (tangential in 

the rotor shown) of the vanes is u m/s. This is given by the following equation. 

u = DN 

2.1.1 Diagram Power 

The power produced by any moving force is the product of force and velocity. The power of the ideal rotor 

is given by the following equation. 

      Cw u     Cw ND 

This is the fundamental way of finding the power produced by fluids passing over moving vanes. Cw is a 

vector quantity and it is found by drawing the vector diagrams for the velocities. For this reason, the power 

is called Diagram Power (D.P.). 

D.P. =     CwND 

 

This formula applies to any type of turbine (steam, gas or water).The main problem is determining Cw 

 

 WORKED EXAMPLE No. 1 

 The vanes on a simple steam turbine are mounted on a rotor with a mean diameter of 0.6 m. The steam 

flows at a rate of 0.8 kg/s and the velocity in the whirl direction is changed by 80 m/s. The turbine rotates 

at 600 rev/min. Calculate the diagram power. 

 SOLUTION 

 

 Rotor Speed  N = 600/60 = 10 rev/s 

 Velocity of the vanes u = ND =   10 x 0.6 = 18.85 m/s 

 Diagram Power         u Cw = 0.8   18.85   80 = 1 206.5 W 
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 SELF ASSESSMENT EXERCISE No. 1 

 

1. A steam turbine has its vanes on a mean diameter of 1.2 m and rotates at 1 500 rev/min. The change in 

the velocity of whirl is 65 m/s and the change in the axial velocity is 20 m/s. The flow rate is 1 kg/s. 

Calculate the following. 

 i. The diagram power. (6.12 kW) 

 ii. The axial force. (20 N) 

 

2. A steam turbine is to be designed to rotate at 3 000 rev/min and produce 5 kW of power when 1 kg/s is 

used. The vanes will be placed on a mean diameter of 1.4 m. Calculate the change in the velocity of 

whirl that will have to be produced. (22.7 m/s) 

 

3. A gas turbine has rotor blades on a mean diameter of 0.5 m and the rotor turns at 2000 rev/min. The 

change in the whirl velocity is 220 m/s and the diagram power is 2 MW. Calculate the mass flow rate of 

gas. (173.6 kg/s) 

 

 

 

  



(c) www.freestudy.co.uk  Author D. J. Dunn 

5 

2.2 Vector Diagram Analysis for Impulse Turbine 

 

Consider a pure impulse turbine similar to figure 2. Let 

the blades be symmetrical in shape. The velocity of the 

steam coming out of the nozzle is an absolute or true 

velocity and is denoted C1. The velocity of the blade at 

the mean diameter is u and given by u   πN  where   

is the mean diameter of the blades on the rotor and N 

the rotor speed in rev/s. The angles are measured 

relative to the direction of u and are designated α for the 

absolute velocities C and  for the blade surface angle. 
     

Note that in a pure impulse turbine the entire expansion 

of the steam is in the nozzle and the entire drop in 

pressure is in the nozzle and so the velocity C1 can be 

calculated. 

 

The steam leaving the nozzle strikes the blade and is 

diverted by the blade. For maximum efficiency the 

angle of the steam jet must be such that the steam 

arrives on the moving vane so that it is travelling 

parallel to the surface of the blade. This is called 

shockless entry. This is essential to avoid energy being 

wasted. 

          Figure 3 

      

At the inlet to the blade (point 1) the steam on the surface will 

have two components, the velocity of the blade u plus the 

velocity of the steam relative to the surface of the blade which 

is often (but confusingly) designated as ω. The rule for 

shockless entry is that the velocity vectors must add up so 

that: 

C1 = u + ω1 

 

Figure 4 shows the vector diagram at inlet to the. Cw1 is the 

component of C1 that is in the direction of u. It is normal to 

draw this to scale and determine the unknown data.  

           Figure 4 

 

It is most likely that the known values are u and C1. If we  now α1 the others can be calculated by applying 

the cosine rule to the triangle: 

      ω1
2 
= C1

2
 + u

2
 - 2 u C1 cos(α1)  from which we solve ω1 

If it is 1 that is known then: 

C1
2
 = ω1

2
 + u

2
 - 2 u ω1 cos(180 - 1)  note that cos(180 - 1) = -cos(1) 

C1
2
   ω1

2
 + u

2
 + 2 u ω1 cos(1)   

Rearrange into quadratic form   ω1
2
 + ω1 {2 u cos(1)}+ (u

2 
 - C1

2
) = 0  

 

This may be solved for ω1 using the quadratic equation.    
          

  
 

We can get the nozzle angle α1 by applying trigonometry and           
           

  
  

 

Or if we know the nozzle angle we can get the ideal blade angle         
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Now examine the vector diagram at exit from the blade. The steam is 

swept around blade and exits (point 2).  The steam has velocity ω2 

relative to the blade plus the velocity of the blade u so the absolute 

velocity of the steam leaving the vane is C2 = u + ω2 

 

The exit vector is shown in figure 5. The magnitude of ω2 is the 

same as ω1 unless friction slows the steam down on the blade. Cw2 is 

the component of C2 in the direction of the blade velocity u and in 

this case it is swept backwards to the direction. 

 

Knowing the value of ω2, u and 2 we can construct the diagram and 
scale off the unknown values. We can also use trigonometry and 

apply the cosine rule again.   C2
2
   ω2

2
 + u

2
 - 2 u ω2 cos(2) 

Rearrange into quadratic form ω2
2
 - ω2 {2 u cos(2)}+ (u

2 
 - C2

2
)  Figure 5 

     

This may be solved for ω2 using the quadratic equation.    
          

  
 

We can get the angle of the steam leaving the vane α2 by applying trigonometry and          
           

  
  

Since the blade velocity u is common to the inlet and outlet, the two diagrams may be drawn together as 

shown in figure 6.        

 
Figure 6 

 

The change in velocity of the steam in the direction of whirl (direction of u) is Cw. In this way we can 

determine Cw either by scaling it from the diagram or calculating it with trigonometry. 

Cw   ω1 cos(1) + ω2 cos(2) 
Put into the formula to calculate the diagram power 

 

Diagram Power = D.P. =   u Cw =   u {ω1 cos(1) + ω2 cos(2)} 

2.2.1 Friction 

If there is no friction ω1   ω2 

If there is friction then the steam is slowed down on the blade so ω1 > ω2 

We define the blade friction coefficient as k = ω2/ω1 

We can now correct the formulae to Cw   ω1{cos(1) + k cos(2)} 
 

2.2.2 Diagram Efficiency 

The energy of the steam approaching the blade is the  inetic energy      1
2
 

The diagram efficiency is defined as: 

   
    

              
 
      

      
  

      
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2.2.3 Optimal Efficiency 

 

In order to simplify this, let us look at a symmetrical blade (1 = 2) and note  ω2     ω1. 
 

Cw   ω1 cos(1) + ω2 cos(2)    ω1 cos(1) +   ω1 cos(1)   ω1 cos(1)(1 + k) 

 

From the vector diagram  ω1 cos(1) = C1 cos(α1) - u substitute into the above 
 

Cw   ω1 cos(1)(1 + k) = {C1 cos(α1) - u} (1 + k) 

 

   
      

  
  

 
                             

  
  

        
 

  
          

 

  
 
 

  

It is common to express this as  

                         where r = 
 

  
 and is called the blade speed ratio. 

For a given nozzle angle and velocity we can plot  d against r (figure 7) and we see that there is a value 

where the efficiency is a maximum. 

 
Figure 7 

To find the maximum point, differentiate  d with respect to r and equate to zero 

 
  

 

  
                       

 

                        
         

 
 

The optimal efficiency is 

                                       

If k = 1    
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 WORKED EXAMPLE No. 2 

 A pure impulse turbine has a single row of symmetrical blades. The steam exits the nozzles with a 

velocity of 195 m/s at 23
o
 to the tangent. The blades rotate on a mean diameter of 0.318 m. 

 Determine: 

 i.   the best wheel speed 

 ii.  the optimal diagram efficiency 

 iii. the blade angles 

  Check your answers by drawing the vector diagram to scale. Assume k = 1 

 

 SOLUTION 

 C1 = 195 m/s α1 = 23
o
 

   
  

 
         

   

 
                   

 u   πN   N = 
     

       
            or 5 390 rev/min 

 ω1
2 
= C1

2
 + u

2
 - 2 u C1 cos(α1)  = 195

2
 + 89.75

2
 - 2   89.75   195   cos(23

o
) = 13 860  ω1 = 117.73 

 C1 sin(α1)   ω1 sin(1)  

 195 sin(23
o
) = 76.2 = 117.73 sin(1)   1 = 40.3

o
 

                

 Check  D.P. = u Cw = 90   180 269 = 16 200 W per unit mass 

 K.E. supplied = C1
2
/2 = 1 952/2 = 19 012.5 W per unit mass 

  d = 16200/19012.5 = 0.85 

 The blade angle at inlet and outlet is 40
 o
. These could also be calculated. Note that at this optimal 

condition the absolute velocity C2 leaves in an axial direction i.e. α2 = 90
o
 

 

Figure 8 
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2.3 Multiple Rows 

A practical impulse turbine needs several sets of moving vanes and fixed nozzles (fixed row) which are also 

blades or vanes (Figure 9). 

2.3.1 Pressure Compounded 

If the pressure is dropped in stages the design is called pressure compounded and is also known as a Rateau 

turbine after the designer. The steam leaving the moving blades is collected by a barrier and then expanded 

through the nozzles. In this way the pressure is dropped in stages from inlet to exit. The fixed row is 

attached to the casing and the moving row is attached to the rotor. The velocity increases only in the nozzles 

as shown. 

 
Figure 9 

 

2.3.2 Velocity Compounded 

It is found in practice that achieving the optimal conditions of steam velocity and blade velocity is not easy 

with a pressure compounded turbine and a modified design is called velocity compounded and named after 

the inventor C. G. Curtis. In this design the entire pressure drop is in the first set of fixed nozzles and 

subsequent fixed vanes on the casing are there only to deflect the steam to obtain the optimal angle. It is 

possible to have several similar stages. 

 
 

Figure 10 
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The picture (Figure 11) shows a turbine with 3 sets of rotors (cylinders) and the rotor on the right has been 

removed to reveal the casing and nozzles. 

 

 
 

Figure 11 
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 WORKED EXAMPLE No. 3 

 A pure impulse turbine has a single row of symmetrical blades with an inlet and outlet angle of 30
o
 to the 

tangent. The steam exits the nozzles with a velocity of 195 m/s. The blades rotate on a mean diameter of 

0.318 m at 3000 rev/min. Draw the blade vector diagram to scale. Assuming shockless entry calculate: 

 

 i.  the diagram power for unit mass flow 

 ii  the angle of the nozzles for shockless entry 

 iii.  the Diagram Efficiency 

 iv.  the kinetic energy in the steam leaving the row 

 

 SOLUTION 

 u   πN    π   (3000/60) x 0.318 = 50 m/s 

 C1 = 195 m/s 1 = 30
o
 and 2 = 30

o
 swept back   = 1 kg/s 

 Constructing the vector diagram as shown produces Cw = 260 m/s 

  . .      u Cw = 1   50 x 260 = 13 000 W or 13 kW 

 The angle of the nozzles is α1 = 23
o
 

   
      

  
  

 
             

     
                

   r we could calculate the  . . at inlet        1
2
 = ½   1   195

2
 = 19 012 W or 19.012 kW 

   = 13/19 = 0.684 

 The exit velocity of the steam is C2 = 110 m/s   

 The  inetic energy is      2
2
 = ½   1   110

2
 = 6 050 W or 6.05 kW 

 Check Energy Balance   D.P. + K.E. at exit = 13 + 6 = 19 kW = K.E. at inlet 

 

Figure 12 

 Students should try calculating the answers with the formulae 
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2.3.4 Axial Force 

 

If the moving blades are not symmetrical and/or there is friction on the blades there is a change in the 

velocity in the direction of the rotor axis. This produces a change in momentum in that direction and so an 

axial force is produced. This would require a large thrust bearing in the turbine design.   

The vector diagram for such a set up is shown in figure 13. The axial component of the absolute steam 

velocity is CA and the change in the axial direction is CA. The axial force is the rate of change in 

momentum in the axial direction FA =   CA and CA1   ω1sin α1 and CA2   ω2sin α2 

 

                  Figure 13                                                                                     Figure 14 

The force can be eliminated by placing two identical rotors back to back so the axial thrust cancels out. 

Figure 14 shows the schematic for such an arrangement and you can see this in figure 15. The steam enters 

at the middle and half flows one way and half the other. 

Because the volume of the steam or gas increases greatly as it progresses along the axis, the height of the 

blades increases in order to accommodate it. Figure 15 shows this. The exhaust steam has such a large 

volume that entry to the condenser is through the large passages underneath. The condenser occupies the 

space below the turbine hall. 

 
Figure 15 

 

The mean diameter D of the blades changes for each row so solving the diagram power is more difficult. If 

the blades are long then the tangential velocity u is different at the root to the tip.  For maximum efficiency 

the blade angle would have vary with radius. 
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 WORKED EXAMPLE No. 4 

 

 The velocity of steam leaving the nozzles of an impulse turbine is 1000 m/s and the nozzle angle is 20
o
 

to the tangential direction. The blade velocity is 350 m/s and the blade friction coefficient is 0.7. The 

blades are symmetrical. For a unit mass flow rate determine the following: 

 

 i. the blade angle at inlet 

 ii. the diagram power 

 iii the diagram efficiency 

 iv the axial force 

 

 SOLUTION 

 From the data given C1 = 1 000 m/s u = 350 m/s α1 = 20
o 

k = 0.7    = 1 kg/s 

 First solve using trigonometry 

 

 ω1
2 
= C1

2
 + u

2
 - 2 u C1 cos(α1)  

 
= 1 000

2
 + 350

2
 - 2   350   1000 cos(20

 o
) = 464.7  10

3
 

 ω1
 
= 681.7 m/s 

        
           

  
       

             

     
        

 Since the blades are symmetrical 2 = 30.1
o
 

 ω2
 
    ω1  =0.7   681.7  = 477.2 m/s 

 Cw   ω1 cos(1) + ω2 cos(2) = 681.7 cos(30.1) + 477.2 cos(30.1)  = 1002.6 m/s 

  . .     u Cw = 1   350   1002.6 = 350.9   10
3
 W or 350.9 kW 

 

   
      

  
  

 
                 

      
            

 

 CA1 = ω1 sin (1) = 681.7   sin(30.1) = 341.9 m/s 

 CA1 = ω2 sin (2) = 477.2   sin(30.1) = 239.3 m/s 

 FA     CA = 1   (341.9 - 239.3) = 102.6 N 
 

 If the vector diagram drawn to scale is shown in figure 16 

 
Figure 16 
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 SELF ASSESSMENT EXERCISE No. 2 

 

1. The velocity of steam leaving the nozzles of an impulse turbine is 375 m/s and the nozzle angle is 20
o
 to 

the tangential direction. The blade velocity is 165 m/s and the blade friction coefficient is 0.85. The 

axial velocity is to be constant. For a unit mass flow rate determine the following: 

 

 i. the blade angle at inlet and outlet (34
o 
and 42

o
) 

 ii. the diagram power (54.8 kW per unit mass) 

 iii the diagram efficiency (78 %) 

  iv. the optimal efficiency (81 %) 

  

 

2. The first stage of a steam turbine is a two row velocity compounded impulse wheel. The velocity of the 

steam leaving the fixed nozzles is 610 m/s and leaves at 16
o
 to the tangential direction. The mean 

velocity of the moving blades is 122 m/s. The exit angle of the moving blades is 18
o
. The exit angle of 

the second row of fixed blades is 21
o
. The exit angle of the second moving row is 35

o
. The blade friction 

coefficient is 0.9 for all the blades. 

 

 Determine the inlet angles for all the blades assuming shock free entry throughout. 

 Answers 20
o
, 24.5

o
 and 34.1

o
 

 

 Assuming a unit mass flow, calculate the diagram power and diagram efficiency for the wheel. 

 Answers 145 kW and 78% 

 

 What would be the maximum possible diagram efficiency? Answer 92.4% 

 Calculate the axial force. Answer 39.4 N 
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3. Reaction Theory 

 

Reaction Forces are exerted on an object when it causes the velocity of the fluid to change. This could be a 

change in magnitude or a change in direction or both. When a fluid accelerates in a nozzle, the kinetic 

energy of the fluid increases and since energy is conserved, the pressure of the fluid drops. In other words, 

the pressure behind the fluid forces it through the nozzle causing it to speed up. The force required to 

accelerate the fluid is in the direction of the acceleration. Every force has an equal and opposite reaction so 

an equal and opposite force is exerted on the nozzle. This is the principle used in rockets. 

 
Figure 17 

 

Applying the law of energy conservation between (1) and (2) we find  

  
 

 
     

  
 

 
                  

  
 

 
 
  
 

 
        

 

Some may regard the following as trivial but for those who like to see the evidence here is the proof that the 

above equation holds true even when the nozzle moves. Otherwise move on to the next page. 

 

The force on the fluid is   F           {C2 - C1} and the force on the nozzle is equal and opposite. 

If this force makes the nozzle move at u to the left, the power developed is F u =  u{C2 - C1}per unit mass. 

  
The absolute velocities of the steam are now C2 - u and C1- u 

 

The energy equation becomes 

       

 
     

       

 
                     

 

       

 
     

       

 
               

Clear the brackets and simplify 

 
  
 

 
 
  

 
 
    
 

     
  
 

 
 
  

 
 
    
 

               

 

  
 

 
         

  
 

 
                  

 

  
 

 
    

  
 

 
         

   
 

 
  

  
 

 
           

 

This shows the energy equation can be applied to any nozzle using the relative velocities. 

 

A pure reaction turbine would be a set of nozzles on a wheel with the reaction force pushing the vanes in a 

tangential direction. In practice the steam is expanded in several stages. Each stage contains one set of fixed 

vanes that serve to accelerate the steam and guide it on to the next set of moving vanes. The steam is not 

only deflected by the moving blades but also undergoes a further drop in pressure producing an increase in 

the relative velocity. 
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It is also normal to keep the axial velocity constant throughout the turbine so CA1 = CA2 = CA and so there is 

no axial force. Consider one pair of blades or stage and make it the first stage. The steam enters the first 

fixed row at point (0) and has shockless entry to the first moving row at (1) and exits at (2) into the next 

fixed row. This is illustrated in figure 18. The steam accelerates from a low velocity at (0) (this is often 

taken as zero for the first stage) to C1. The pressure and enthalpy is reduced in consequence. The steam 

enters the moving row with absolute velocity C1 at an absolute angle of α1. The moving blade must have 

angle 1 at entry to ma e the relative velocity ω1 correct for shockless entry. The steam expands through the 
moving blades driving the rotor. The absolute velocity and enthalpy drops further. If there is a following row 

of fixed blades the angles at (2) must be correct for shoc less entry (α2 and 2) but we are not considering 

the next stage at the moment. 

 
Figure 18 

3.1 Degree of Reaction 

 

A reaction turbine designed along these lines must be partly impulse and partly reaction and the degree of 

reaction in a stage is defined as   

  
                           

                            
 

     
     

 

 

Remember the change in enthalpy over the rotor is equal to the change in relative kinetic energy. 

      
  

 

 
 
  

 

 
 

 

 
   

    
   

Applying energy conservation to the rotor we have: 

   
  
 

 
    

  
 

 
   

 

where P is the diagram power per unit mass flow (energy removed by the rotor) 

 

           
  
 

 
 
  
 

 
  

 

 
   

    
   

 

 
     

    
    

 

Applying the energy equation over the stage we have: 

 

   
  
 

 
    

  
 

 
                      

 

 
   

    
   

 

The problem with a turbine designed along these lines is that the angles and shape of each row of blades is 

different and it is much more common to make the velocity the same at the entry to all fixed rows (except 

perhaps the first row). If this is done as well as keeping the axial velocity constant, then all the fixed blades 

and moving blades are identical as shown (except perhaps the first row).  
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This design is named after Charles Parsons. It follows that the pressure drop over each stage is the same. 

Figure 19 shows the layout of such a turbine and the vector diagram. 

 

 
Figure 19 

 

It can be seen from the vector diagram (figure 19) that α1 = 2, α2 = 1, C1   ω2  and  C2   ω1  and it follows 

that C2 is the same as the velocity exiting the previous fixed stage C0. This means that the overall change in 

kinetic energy for the two rows from point (0) to point (2) is zero.  

 

If the velocity is returned to the same value after each stage then C0 = C2   so 

           
 

 
   

    
   

 

 
     

    
   

 

  
     
     

 
   

    
  

  
 

   
    

  

   
    

      
    

   
 

 

If α2 = 1 and α1 = 2 then ω1 = C2  and  ω2 = C1   
 

  
   

    
  

   
    

      
    

   
 

   
    

  

    
    

   
 

 

 
 

 

The degree of reaction is hence 50% for a  arson’s turbine.  

 

3.2 Diagram Efficiency for Parsons Turbine 

The definition of diagram efficiency (also called blade efficiency) is: 

   
    

                                   
 

 

D.P. = u Cw = u(2 C1 cosα1 - u) from the vector diagram 

E = Kinetic energy in the absolute velocity entering plus the enthalpy drop over the rotor. 

E =  
  
 

 
           this means the kinetic energy of the steam leaving the rotor 

  
 

 
 is excluded. This is the 

same as the impulse turbine with the enthalpy drop term added for the reaction part.  

It was shown earlier that 

      
  

 

 
 
  

 

 
            

  
 

 
  

  
 

 
 
  

 

 
  

For the Parsons turbine  ω2 = C1   
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Applying the cosine rule to the input vector triangle 

 

  
    

               
 

 

   
              

  
  

   
               

 

 
               

  
              

 

 

Often this is changed to use the ratio r = u/C1     

 

   
             

            
 

3.3 Optimal Efficiency 

 

If we plot the diagram efficiency against r using typical 

values we see there is a clear maximum. It can be shown 

that the maximum occurs when r   cos(α1) (you can prove 

this by differentiating if you wish). The optimal efficiency 

is then 

   
       

        
                

 

Compare this to the impulse turbine. 

 

                r     cos(α1)          Figure 20 

 

3.4 Axial Flow 

 

It should be borne in mind that steam and gas, unlike 

liquids, undergoes a volume increase when the pressure 
falls. This would produce steam velocities that are much too 

big so the vanes on the rotor and the casing (figure 21) 

increase in height as the pressure falls. For a given pair of 

rows it is assumed that the average height is h and the mean 

diameter of rotation is D. The volume of steam passing 

through the annular ring is the product of area and axial 

velocity CA.  

V   π   h  A 

 

This ignores the effect of the blade thickness.     Figure 21 

If the blades are short the area is  A   π   h 

If the blades are tall    A  π ( o
2
 -Di

2
) 

 

Do and Di are the outer and inner diameters        

 

For a mass flow   

   V     v  where v is the specific volume 
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 WORKED EXAMPLE No. 5 

 

 The fixed row of a 50% reaction turbine ( arson’s) stage produces dry saturated steam at 2.7 bar and an 

absolute velocity of 100 m/s. The mean height of the blades is 40 mm. The moving blades are swept back 

at 20
o
 to the tangent. The axial velocity of the steam is ¾ of the blade velocity at the mean diameter. 

Steam is supplied to the stage at 9080 kg/hour. Ignore the blade thickness when calculating the annulus 

area. 

 

 Determine: 

  i.   the rotor speed in rev/min 

  ii.  the diagram power 

  iii. the diagram efficiency 

  iv. the enthalpy drop of the steam over the stage 

 

 SOLUTION 

 

 You need to start sketching the blade vector diagram to work out how to draw it. We know the following: 

 C2 = C1 = 100 m/s 2   α1 = 20
o 

CA = ¾ u CA = C1 sin α1 = 100 sin 20
o
 = 34.2 m/s h = 40 mm 

 u = 4 x 34.2/3 = 45.6 m/s   

 This is sufficient to draw the vector diagram. The figures on the diagram are rounded off but accurate 

figures may be found using trigonometry. 

 
Figure 22 

 

 First we need to find the annular area from the volume flow rate so we need the specific volume of the 

steam leaving the fixed row. 

 

 v = vg @ 2.7 bar which from tables or other sources is 0.6057 m
3
/kg 

 The volume flow rate is hence  V = 9080   0.6057 = 5 500 m
3
/hour or 91.7 m

3
/min or 1.528 m

3
/s 

 V = 1.528 m
3
/s 

 

 The annular area is A = V/CA =  1.528/34.2 = 0.0447 m
2
 

 A   π  h  hence     0.0447/(π x 0.04)   0.356 m 

 

  
 

   
    

    

        
                  

 

 Cw = 100 cos(20
o
)   2 - 46 = 142 m/s (or scale from diagram) 

 

  



(c) www.freestudy.co.uk  Author D. J. Dunn 

20 

 

  . .     u Cw = (9 080/3 600)   46   142 = 16 475 W or 16.475 kW 

 

 The energy input to the moving blades was earlier shown to be  

    
  

  
 

 
 

 Putting in the numbers from the vector diagram  

 E = 100
2
 - ½   59

2
 = 8 259.5 J per unit mass so E = 8 259.5   (9 080/3 600) = 2 0832.3 W 

  d = 16.475/20.832 = 0.79 or 79% 

 

   
              

  
  

  
 

  

  
                        

     
   

 

 
       

       
      

 

 Specific enthalpy drop over the moving row     ( ω2
2
 - ω1

2
) = ½ (100

2
 - 59

2
) = 3 259.5 J/kg 

 

 Specific enthalpy drop over the stage = 2   3 259.5 = 65 19 J/kg 
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 SELF ASSESSMENT EXERCISE No. 3 

 

1. A stage of a 50% reaction turbine has a row of blades on a mean diameter of 1 m that rotates at 3000 

rev/min. The exit angles of the blades are 30
o
 and the inlet angles 50

o
.The mass flow rate is 10000 

kg/min. The stage efficiency is 85%. 

 Determine 

 i.   the diagram power (11.83 MW) 

 ii.  the diagram efficiency (72.9 %) 

 

2. The rotor in a stage of a reaction turbine spins at 3000 rev/min and the blades have an exit angle of 20
o
, a 

mean tangential velocity of 91.44 m/s and mean length of 25.4 mm. The blade speed ratio is 0.56. The 

specific volume of the steam at entry to the rotor is 0.655 m
3
/kg. The axial velocity is constant. 

 

 Neglecting the blade thickness calculate the mass flow rate of steam. (3.956 kg/s) 

 Calculate the diagram power, diagram efficiency and optimum diagram efficiency. 

 (Answers 77.92 kW, 85% and 94%) 

 

3. A reaction turbine uses 0.5 kg/s of steam to produce 22.38 kW. The blade velocity ratio is 0.8. The exit 

angle of the blades is 20
o
. The axial velocity is constant. 

 Determine: 

 i.    the enthalpy drop in each moving row.( 11.19 kJ/s ) 

 ii.   the blade mean velocity (182.1 m/s) 

 iii.  the diagram efficiency (93%) 

 iv.  the optimal efficiency (94%) 
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4. The Affect of Friction 
 

When a vapour or gas expands in a turbine, there are various 

sources of frictional losses that reduce the power output and results 

in an increase in the entropy of the fluid. On an h - s chart the 

expansion from pressures p1 to p2 is as shown. Expansion from 1 to 

2 is the ideal isentropic expansion and from 1 to 2 is the actual 

expansion with friction. The drop in enthalpy is hf. The isentropic 

or overall efficiency is defined as  

   
     
     

 
   

     
  

 

If the expansion shown is just one stage of a multistage turbine then this is called the stage efficiency and 

defined as: 

    
    

     
 

From which         
        

 

Now consider a 2 stage turbine expanding fluid from pressure p1 

to p3. The overall expansion is 1 to 3 but the stage efficiency of 

the second stage is: 

    
      
      

 
    

      
 

 

From which          
         

 

For the two stages the overall isentropic efficiency is: 

 

   
     

     
 

                   

     
 

 

   
 
  
       

  
    

       
 

If the stage efficiency is the same for both stages and denoted  s then: 

 

   
 
 
           

       
 

 

This could be applied to any number of stages and written as: 

 

   
 
 
    

   
 

Where hi is ideal or isentropic overall change in enthalpy. 

 

The Reheat Factor is given by the term 
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The same theory can be applied to gas or steam turbines. If any expansion (or compression) is deemed to be 

made up of an infinite number of small stages, the reheat factor becomes the Polytropic Efficiency and this 

is covered in detail in the next tutorial. 

 

 

 WORKED EXAMPLE No. 6 

 

 Steam at 15 bar and 300
o
C is expanded through a reaction turbine to 0.14 bar. All the stages have a stage 

efficiency of 75%. The reheat factor is 1.04. The turbine is required to produce 12 MW. Calculate the 

flow of steam required. 

 

 SOLUTION 

 

 At inlet the steam properties are: p1   15 bar   θ1 = 300
o
C    h1 = 3 039 kJ/kg   s1 =  6.919 kJ/kg K 

 At exit the steam properties are : p2 = 0.14 bar and probably wet steam of unknown dryness fraction. 

 

 The ideal entropy value is s2 =  6.919 kJ/kg K = sf + x sfg = 0.737 +  7.294 x2 

 

 x2 = (6.919 - 0.737)/7.294 = 0.8475   (the ideal dryness fraction at exit for an isentropic expansion). 

 

 The ideal enthalpy value is h2 = hf + x2 hfg at 0.14 bar 

 

 h2 = 220 + (0.8475)(2 376) = 2 233.7 kJ/kg 

 

 The ideal power output is      (h1 - h2)    (3 039 – 2 233.7)    05.3    W 

 

  o =  s   R.F. = 75%   1.04 = 75%  

 

 The actual power output is     ( 05.3  )    o   ( 05.3  ) 0.75   604      W 

 

 Equating to the required power 

 604     12 000  W  hence   = 19.9 kg/s 

 

 

 

 

 SELF ASSESSMENT EXERCISE No. 4 

 

 Steam at 60 bar and 500
o
C is expanded through a reaction turbine to 0.07 bar. All the stages have a stage 

efficiency of 80%. The reheat factor is 1.05. The turbine is required to produce 20 MW. Calculate the 

flow of steam required. 

 Answer 20.46 kg/s 
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5. Extra Tutorial Sheet (For Steam/Gas Turbines) no solutions 
 

Q1. The adiabatic heat drop in a given stage of a multi-stage impulse turbine is 22.1 kJ/kg of steam. The 

nozzle outlet angle is 16
o
 the efficiency of the nozzle, defined as the ratio of the actual gain of kinetic 

energy in the nozzle to adiabatic heat drop, is 92%. The mean diameter of the blades is 1473.2 mm and 

the revolution per minutes is 1500. Given that the carry over factor  is 0.88, and that the blades are 
equiangular (the blade velocity coefficient is 0.87). Calculate the steam velocity at the outlet from 

nozzles, blade angles, and gross stage efficiency.  

 

Q2. The following particulars related to a two row velocity compounded impulse wheel which forms a first 

stage of a combination turbine. 

 

Steam velocity at nozzle outlet = 579.12 m/s 

Mean blade velocity = 115.82 m/s 

Nozzle outlet angle = 16
o
 

Outlet angle first row of moving blades = 18
o
  

Outlet angle fixed guide blades = 22
o
 

Outlet angle, second row of moving blades = 36
o
  

Steam flow rate = 2.4 kg/s 

 

The ratio of the relative velocity at outlet to that at inlet is 84.0  for all blades. Determine for each row 

of moving blades the following 

 

(a) The velocity of whirl 

(b) The tangential thrust on blades 

(c) The axial thrust on the blades 

(d) The power developed 

 

What is the efficiency of the wheel as a whole? 

 

Q3. A velocity compounded impulse wheel has two rows of moving blades with a mean diameter of      

711.2 mm. The speed of rotation is 3 000 rpm, the nozzle angle is 16
o
 and the estimated steam velocity 

at the nozzle outlet is 554.73 m/s. The mass flow rate of the steam passing through the blades is 5.07 

kg/s. 

 

Assuming that the energy loss in each row of blades (moving and fixed) is 24% of the kinetic energy of 

the steam entering the blades and referred to as the relative velocity, and that the outlet angles of the 

blades are: (1) first row of moving blades 18
o
, (2) intermediate guide blade 22

o
, (3) second row of 

moving blades is 36
o
, draw the diagram of relative velocities and derive the following. 

 

(a) Blade inlet angles 

(b) Power developed in each row of blades 

(c) Efficiency of the wheel as a whole 
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Q4. The following particulars refer to a stage of an impulse-reaction turbine. 

 

Outlet angle of fixed blades = 20
o
  

Outlet angle of moving blades = 30
o
 

Radial height of fixed blades =100 mm 

Radial height of moving blades =100 mm 

Mean blade velocity = 138 m/s 

Ratio of blade speed to steam speed = 0.625 

Specific volume of steam at fixed blade outlet =1.235 m
3
/kg 

Specific volume of steam at moving blade outlet =1.305 m
3
/kg 

 

Calculation the degree of reaction, the adiabatic heat drop in pair of blade rings, and the gross stage 

efficiency, given the following coefficients which may be assumed to be the same in both fixed and 

moving blades : .86.0,9.0  m  

 

Q5. Steam flows into the nozzles of a turbine stage from the blades of preceding stage with a velocity of  

100 m/s and issues from the nozzles with a velocity of 325 m/s at angle of  o20  to the wheel plane. 

Calculate the gross stage efficiency for the following data: 

 

Mean blade velocity =180 m/s 

Expansion efficiency for nozzles and blades = 0.9 

Carry over factor for nozzles and blades = 0.9 

Degree of reaction = 0.26 

Blade outlet angle = 28
o
  

 


