
THERMODYNAMICS 
 

TUTORIAL 7 
 

COMPRESSIBLE FLOW 
 
 

 
On completion of this tutorial you should be able to do the following. 
 
 
  

• Define entropy 
 

• Derive expressions for entropy changes in fluids 
 

• Derive Bernoulli's equation for gas 
 

• Derive equations for compressible ISENTROPIC flow 
 

• Solve problems involving compressible flow 
 

Note that more work on compressible flow may be found under FLUID MECHANICS. 
 
 

Let's start by revising entropy. 
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1. ENTROPY 
 
1.1  DEFINITION 
 
You should already be familiar with the theory of work laws in closed systems. You 
should know that the area under a pressure-volume diagram for a reversible expansion 
or compression gives the work done during the process. 
 
In thermodynamics there are two forms of energy transfer, work (W) and heat (Q). By 
analogy to work, there should be a property which if plotted against temperature, then 
the area under the graph would give the heat transfer. This property is entropy and it is 
given the symbol S. Consider a p-V and T-s graph for a reversible expansion. 

 
Figure 1 

 

From the p-V graph we have W = ∫pdV 
 

From the T-S graph we have Q = ∫TdS 
 
This is the way entropy was developed for thermodynamics and from the above we get 
the definition  
  dS = dQ/T 
 
The units of entropy are hence J/K.  
 
Specific entropy has a symbol s and the units are J/kg K 
 
It should be pointed out that there are other definitions of entropy but this one is the 
most meaningful for thermodynamics. A suitable integration will enable you to solve 
the entropy change for a fluid process. 
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2. ISENTROPIC PROCESSES 
 
The word Isentropic means constant entropy and this is a very important 
thermodynamic process. It occurs in particular when a process is reversible and 
adiabatic. This means that there is no heat transfer to or from the fluid and no internal 
heat generation due to friction. In such a process it follows that if dQ is zero then dS 
must be zero. Since there is no area under the T-S graph, then the graph must be a 
vertical line as shown. 

 
Figure 2 

 
There are other cases where the entropy is constant. For example, if there is friction in 
the process generating heat but this is lost through cooling, then the nett result is zero 
heat transfer and constant entropy. You do not need to be concerned about this at this 
stage. 
 
Entropy is used in the solution of gas and vapour problems. We should now look at 
practical applications of this property and study the entropy changes which occur in 
closed and steady flow systems for perfect gases and vapours. These derivations should 
be learned for the examination. 
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3. ENTROPY CHANGES FOR A PERFECT GAS  IN A CLOSED SYSTEMS 
 
Consider a closed system expansion of a fluid against a piston with heat and work 
transfer taking place. 

Figure 3 
 
Applying the non-flow energy equation we have 
    Q + W = ∆U 
 
Differentiating we have   dQ + dW = dU 
 
Since dQ = TdS and dW = -pdV then  TdS - pdV = dU 
 
    TdS = dU + pdV 
 
This expression is the starting point for all derivations of entropy changes for any fluid 
(gas or vapour) in closed systems. It is normal to use specific properties so the equation 
becomes 
  Tds = du + pdv   
 
but from the gas law pv = RT  we may substitute for p and the equation becomes 
  Tds = du + RTdv/v 
 
rearranging and substituting du = cv dT we have 
 
  ds = cv dT/T + Rdv/v...............(1) 
 
s is specific entropy  
 
v is specific volume. 
 
u is specific internal energy and later on is also used for velocity. 
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3.1 ISOTHERMAL PROCESS 

 
Figure 4 

 
In this case temperature is constant.  Starting with equation (1)  
 
 ds = cv dT/T + Rdv/v. 
 
since dT = 0 then 
 
 s2 - s1 = ∆s = R ln(v2/v1) 
 
A quicker alternative derivation for those familiar with the work laws is: 
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3.2 CONSTANT VOLUME PROCESS 

 
Figure 5 

 
Starting again with equation (1) we have ds =  cvdT/T + Rdv/v 
In this case dv=0 so   ds = cvdT/T 
Integrating between limits (1) and (2) ∆s= cv ln(T2/T1) 
 
3.3 CONSTANT PRESSURE PROCESS 

 
Figure 6 

 
Starting again with equation (1) we have 

v
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3.4  POLYTROPIC PROCESS 
 
This is the most difficult of all the derivations here. Since all the forgoing are particular 
examples of the polytropic process then the resulting formula should apply to them also. 

 
Figure 7 

The polytropic expansion is from (1) to (2) on the T-s diagram with different pressures, 
volumes and temperatures at the two points. The derivation is done in two stages by 
supposing the change takes place first at constant temperature from (1) to (A) and then 
at constant pressure from (A) to (2). You could use a constant volume process instead of 
constant pressure if you wish. 
 s2-s1 = (sA-s1) - (sA-s2)  
 s2-s1 = (sA-s1) + (s2-sA)  
For the constant temperature process 
 (sA-s1) = R ln(p1/pA) 
For the constant pressure process 
 (s2-sA) = (cp) ln(T2/TA) 
Hence 

 ++=∆
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From the relationship between cp, cv, R and γ  we have cp/R =γ /(γ-1) 
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This formula is for a polytropic process and should work for isothermal, constant 
pressure, constant volume and adiabatic processes also. In other words, it must be the 
derivation for the entropy change of a perfect gas for any closed system process. This 
derivation is often requested in the exam. 
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 WORKED EXAMPLE No. 1 
 
 A perfect gas is expanded from 5 bar to 1 bar by the law pV1.2 = C. The initial 

temperature is 200oC. Calculate the change in specific entropy. 
 R = 287 J/kg K  γ =1.4. 
 
 SOLUTION 
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 SELF ASSESSMENT EXERCISE No. 1 
 
1. Calculate the specific entropy change when a perfect gas undergoes a reversible 

isothermal expansion from 500 kPa to 100 kPa. R = 287 J/kg K.  
 (Answer +461.9 J/kg K). 
 
2. Calculate the total entropy change when 2 kg of perfect gas is compressed 

reversibly and isothermally from 9 dm3 to 1 dm3. R=300 J/kg K. (Answer -1.32 
kJ/k) 

 
3. Calculate the change in entropy when 2.5 kg of perfect gas is heated from 20oC to 

100oC at constant volume. Take cv= 780 J/kg K   (Answer 470 J/K) 
 
4. Calculate the total entropy change when 5 kg of gas is expanded at constant 

pressure from 30oC to 200oC. R = 300 J/kg K  cv= 800 J/kg K   (Answer 2.45 kJ/K) 
 
5. Derive the formula for the specific change in entropy during a polytropic process 

using a constant volume process from (A) to (2). 
 
6. A perfect gas is expanded from 5 bar to 1 bar by the law pV 1.6 = C. The initial 

temperature is 200oC. Calculate the change in specific entropy.  
 R = 287 J/kg K  γ =1.4.  (Answer -144 J/kg K) 
 
7. A perfect gas is expanded reversibly and adiabatically from 5 bar to 1 bar by the 

law pVγ = C. The initial temperature is 200oC. Calculate the change in specific 
entropy using the formula for a polytropic process. R = 287 J/kg K   γ =1.4.  (The 
answer should be zero since the process is constant entropy). 
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Let's go on to apply the knowledge of entropy to the flow of compressible fluids starting 
with isentropic flow. 
 
4.  ISENTROPIC FLOW 
 
Isentropic means constant entropy. In this case we will consider the flow to be 
ADIABATIC also, that is, with no heat transfer. 
 
Consider gas flowing in a duct which varies in size. The pressure and temperature of the 
gas may change. 

 
Figure 8 

 
Applying the steady flow energy equation between (1) and (2) we have : 
 
  Φ  -  P  = ∆U +  ∆F.E. +  ∆K.E. + ∆P.E. 
 
For Adiabatic Flow, Φ = 0  and if no work is done then  P = 0 
 
          ∆U  +  ∆F.E.  =  ∆H 
hence : 
  0  =  ∆H + ∆K.E.+ ∆P.E. 
 
In specific energy terms this becomes : 
 
 0 =  ∆h  + ∆k.e. + ∆p.e. 
 
rewriting we get:   
 
 h1  +   u1

2/2  +  g z1   = h2  +   u2
2/2  +  g z2 

 
For a gas, h = Cp T so we get Bernoulli's equation for gas which is : 
 
 CpT1  +  u1

2/2  +  g z1   = C pT2  +   u2
2/2  +  g z2 

 
Note that T is absolute temperature in Kelvins   T = oC + 273 
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4.1 STAGNATION CONDITIONS 
 
If a stream of gas is brought to rest, it is said to STAGNATE. This occurs on leading 
edges of any obstacle placed in the flow and in instruments such as a Pitot Tube. 
Consider such a case for horizontal flow in which P.E. may be neglected. 

 
Figure 9 

 
u2 = 0    and z1 = z2  so CpT1  +  u12/2    = C pT2  +   0 
   
T2  =  u12/2Cp  + T1  
 
T2  is the stagnation temperature for this case. 
 
  Let T2 - T1 =  ∆T   =   u12/2Cp 
 
     ∆T = u12/2Cp 
 
Now Cp  - Cv  =  R    and    Cp  / Cv = γ        γ  is the adiabatic index . 
 
hence Cp = R / (γ - 1)   and so : 
 
     ∆T = u12 (γ - 1) /  (2γ R) 
   
It can be shown elsewhere that the speed of sound   a  is given by : 
 

a 2 =  γ RT 
hence at point 1: 

   ∆T / T1  = u12 (γ - 1) / (2γ RT1) = u12 (γ - 1 ) /2a12 
 

The ratio  u/a is the Mach Number Ma so this may be written as : 
 

   ∆T / T1   =    Ma2 (γ   - 1 ) /2 
 
If Ma is less than 0.2 then Ma2 is less than 0.04 and so  ∆T/T1 is less than 0.008. It 
follows that for low velocities, the rise in temperature is negligible under stagnation 
conditions. 
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The equation may be written as : 
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Since pV/T = constant and  p Vγ    = constant then : 
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p2 is the stagnation pressure. If we now expand the equation using the binomial theorem 
we get : 
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Now compare the equations for gas and liquids : 
 
LIQUIDS       u = ( 2∆p/ρ)0.5 
 

GAS         
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where      ρ1=   p1/ RT    and       Ma2 = u12/ (γ RT) 
 
hence        u = ( 2∆p /ρ1)0.5  which is the same as for liquids. 
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 SELF ASSESSMENT EXERCISE No. 2 
 
 Take  γ = 1.4 and R = 283 J/kg K in all the following questions. 
 
1. An aeroplane flies at Mach 0.8  in air at 15o C and 100 kPa pressure. Calculate the 

stagnation pressure and temperature. (Answers 324.9 K and 152.4 kPa) 
 
2. Repeat problem 1 if the aeroplane flies at Mach 2. (Answers 518.4 K and 782.4 

kPa) 
 
3. The pressure on the leading edges of an aircraft is 4.52 kPa more than the 

surrounding atmosphere.  The aeroplane flies at an altitude of 5 000 metres. 
Calculate the speed of the aeroplane.( Answer 109.186 m/s) 

 
 Note from fluids tables, find that  a = 320.5 m/s   p1 = 54.05 kPa   γ  = 1.4 
 
 4. An air compressor delivers air with a stagnation temperature 5 K  above the 

ambient  temperature. Determine the velocity of the air. (Answer 100.2 m/s) 
 
 
Let's now extend the work to pitot tubes. 
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5. PITOT STATIC TUBE 
 

A Pitot Static Tube is used to measure the velocity of a fluid. It is pointed into the 
stream and the differential pressure obtained gives the stagnation pressure. 

 
Figure 10 

 p2 =  p1 + ∆p    
 
Using the formula in the last section, the velocity v may be found. 
 
 
 WORKED EXAMPLE No.2 
 
 A pitot tube is pointed into an air stream which has a pressure of 105 kPa.  The 

differential pressure is 20 kPa and the air temperature is 20oC. Calculate the air 
speed. 

 
 SOLUTION 
  
 p2 =  p1 + ∆p    =  105 + 20 = 125 kPa 
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 a = (γRT)0.5  = (1.4 x 287 x 293 )0.5 = 343 m/s 
 
 Ma = u/a   hence u = 217.7 m/s 
 
  
 
 
Let's further extend the work now to venturi meters and nozzles. 
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6. VENTURI METERS AND NOZZLES 
 
Consider the diagrams below and apply Isentropic theory between the inlet and the 
throat. 

 
Figure 11 

 
 u22 - u12 = h1 - h2 
  
If the Kinetic energy at inlet is ignored this gives us  u22  = h1 - h2 
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The mass flow rate m =ρ2 A2 u2  Cd  where Cd is the coefficient of discharge which for 
a well designed nozzle or Venturi is the same as the coefficient of velocity since there is 
no contraction and only friction reduces the velocity. 
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If a graph of mass flow rate is plotted against pressure ratio  (p2/ p1) we get: 

 
Figure 12 

 
Apparently the mass flow rate starts from zero and reached a maximum and then 
declined to zero. The left half of the graph is not possible as this contravenes the 2nd 
law and in reality the mass flow rate stays constant over this half. 
 
What this means is that if you started with a pressure ratio of 1, no flow would occur. If 
you gradually lowered the pressure p2 , the flow rate would increase up to a maximum 
and not beyond. The pressure ratio at which this occurs is the CRITICAL RATIO and 
the nozzle or Venturi is said to be choked when passing maximum flow rate. Let 
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The student should differentiate the mass formula above and show that at the maximum 
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6.1  MAXIMUM  VELOCITY 
 
If the formula for the critical pressure ratio  is substituted into the formula for velocity, 
then the velocity at the throat of a choked nozzle/Venturi is : 
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Hence the maximum velocity obtainable at the throat is the local speed of sound. 
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6.2 CORRECTION FOR INLET VELOCITY 
 
In the preceding derivations, the inlet velocity was assumed negligible. This is not 
always the case and especially in Venturi Meters, the inlet and throat diameters are not 
very different and the inlet velocity should not be neglected. The student should go 
through the derivation again from the beginning but this time keep v1 in the formula and 
show that the mass flow rate is  
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The critical pressure ratio can be shown to be the same as before. 
 
6.3  MORE ON ISENTROPIC FLOW 
 
When flow is isentropic it can be shown that all the stagnation properties are constant. 
Consider the conservation of energy for a horizontal duct : 
 

h + u2/2  = constant           h = specific enthalpy 
 

If the fluid is brought to rest the total energy must stay the same so the stagnation 
enthalpy ho is given by : 
 
ho     =   h + u2/2  and will have the same value at any point in the duct. 
 
since ho = Cp To then To (the stagnation temperature) must be the same at all points. It 
follows that the stagnation pressure po is the same at all points also. This knowledge is 
very useful in solving questions. 
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6.4  ISENTROPIC EFFICIENCY (NOZZLE EFFICIENCY) 
 
If there is friction present but the flow remains adiabatic, then the entropy is not 
constant and the nozzle efficiency is defined as : 
 

η=  actual enthalpy drop/ideal enthalpy drop 
 
For a gas this becomes : (T1 - T2)/(T1 - T2' ) 
 
T2' is the ideal temperature following expansion. Now apply the conservation of energy 
between the two points for isentropic and non isentropic flow : 
 

Cp T1  + u12/2 =Cp T2 + u22/2    ....... for isentropic flow 
 

Cp T1  + u12/2 =Cp T2' +  u2' 2/2   .........for non isentropic 
Hence  
 

      η= (T1 - T2)/(T1 - T2' )  =  (u22 - u12)/(u2' 2 - u12) 
 

If v1 is zero (for example Rockets) then this becomes : 
 
   η= u22 /u2' 2  
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 SELF ASSESSMENT EXERCISE No. 3 
 
1. A Venturi Meter must pass 300g/s of air. The inlet pressure is 2 bar and the inlet 

temperature is 120oC. Ignoring the inlet velocity, determine the throat area. Take 
Cd as 0.97. Take   γ =1.4  and R = 287 J/kg K  (assume choked flow) 

 (Answer 0.000758 m2) 
 
2. Repeat problem 1 given that the inlet  is 60 mm diameter and the inlet velocity 

must not be neglected. (Answer 0.000747 m2) 
 
3. A nozzle must pass 0.5 kg/s of steam with inlet conditions of 10 bar and 400oC. 

Calculate the throat diameter that causes choking at this condition. The density of 
the steam at inlet is 3.263 kg/m3. Take γ  for steam as 1.3   and Cd as 0.98. 

 (Answer 23.2 mm) 
 
4. A Venturi Meter has a throat area of 500 mm2. Steam flows through it, and the inlet 

pressure is 7 bar and the throat pressure is 5 bar. The inlet temperature is 400oC. 
Calculate the flow rate. The density of the steam at inlet is 2.274 kg/m3. 

 
 Take    γ= 1.3.  R = 462 J/kg K. Cd=0.97. (Answer 383 g/s) 
 
5. A pitot tube is pointed into an air stream which has an ambient  pressure of 100 kPa 

and temperature of 20oC. The pressure rise measured is 23 kPa. Calculate the air 
velocity.  Take   γ = 1.4  and R = 287 J/kg K. (Answer 189.4 m/s) 

 
6. A fast moving stream of gas has a temperature of 25oC. A thermometer is placed 

into it in front of a small barrier to record the stagnation temperature. The 
stagnation temperature is 28oC. Calculate the velocity of the gas. Take   γ= 1.5 and 
R = 300 J/kg K. (Answer 73.5 m/s) 

 
 
Let's do some further study of nozzles of venturi shapes now. 
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7.  CONVERGENT - DIVERGENT NOZZLES 
 
A nozzle fitted with a divergent section is in effect a Venturi shape. The divergent 
section is known as a diffuser. 

 
Figure 13 

 
If p1 is constant and p3 is reduced in stages, at some point p2 will reach the critical 
value which causes the nozzle to choke. At this point the velocity in the throat is sonic. 
 
If p3 is further reduced, p2 will remain at the choked value but there will be a further 
pressure drop from the throat to the outlet.  The pressure drop will cause the volume of 
the gas to expand. The increase in area will tend to slow down the velocity but the 
decrease in volume will tend to increase the velocity. If the nozzle is so designed, the 
velocity may increase and become supersonic at exit. 
 
In rocket and jet designs, the diffuser is important to make the exit velocity supersonic 
and so increase the thrust of the engine. 
 
7.1  NOZZLE AREAS 
 
When the nozzle is choked, the velocity at the throat is the sonic velocity and 
the Mach number is 1. If the Mach number at exit is Me then the ratio of the 
throat and exit area may be found easily as follows. 
 
ut= (γRTt)0.5      ue= Me(γRTe)0.5              mass/s = ρtAtvt = ρeAeve. 
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There is much more which can be said about nozzle design for gas and steam with 
implications to turbine designs. This should be studied in advanced text books. 
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 WORKED EXAMPLE No.3 
 
 Solve the exit velocity for the nozzle shown assuming isentropic flow: 

 
Figure 14 

 
 T1 = 350 K      P1  = 1 MPa     p2 = 100 kPa 
 
 The nozzle is fully expanded (choked).  Hence Mt = 1   (the Mach No.) 
 The adiabatic index γ = 1.4 
 
 SOLUTION 
  
 The critical pressure   pt  =  p1 {2/(γ - 1)} γ/(γ-1)  = 0.528 MPa  
 
 Tt/T1  =  (pt/p1)( γ-1)/ γ   hence Tt = 291.7 K 
 To/Tt = {1 + M2(γ -1)/2 }   hence  To = 350 K 
 
 It makes sense that the initial pressure and temperature are the stagnation values 

since the initial velocity is zero. 
 
 T2=Tt (p2/pt)

( γ-1)/ γ = 181.3 K           a2 = (γRT2)0.5  = 270 m/s 
 
 po/p2 = {1 + M22(γ - 1)/2  } γ/(γ-1)    
  
 Hence M2 = 2.157      and   u2 = 2.157 x 270 = 582.4 m/s 
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 SELF ASSESSMENT EXERCISE No. 4 
 
1.  A nozzle is used with a rocket propulsion system. The gas is expanded from 

complete stagnation conditions inside the combustion chamber of 20 bar and 
3000K. Expansion is  isentropic to 1 bar at exit. The molar mass of the gas is 33 
kg/kmol. The adiabatic index is 1.2. The throat area is 0.1 m2. Calculate the thrust 
and area at exit. 

 (Answers 0.362 m2 and 281.5 kN) 
 
 Recalculate the thrust for an isentropic efficiency of 95%. 
 (Answer 274.3 kN) 
 
 Note that expansion may not be complete at the exit area. You may assume 
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2.  A perfect gas flows through a convergent-divergent nozzle at 1 kg/s. At inlet the 

gas pressure is 7 bar, temperature 900 K and velocity 178 m/s. At exit the velocity 
is 820m/s. The overall isentropic efficiency is 85%. The flow may be assumed to be 
adiabatic with irreversibility's only in the divergent section. 

 
 Cp = 1.13 kJ/kg K R = 287 J/kg K. 
 
 Calculate the cross sectional areas at the inlet, throat and exit.  
 (Answers 20.8 cm2, 10.22 cm2 and 13.69 cm2) 
 
 Calculate the net force acting on the nozzle if it is stationary. The surrounding 

pressure is 1 bar. (-527 N) You may assume 
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3.  Dry saturated steam flows at 1 kg/s with a pressure of 14 bar. It is expanded in a 

convergent-divergent nozzle to 0.14 bar. Due to irreversibility's in the divergent 
section only, the isentropic efficiency 96%.  The critical pressure ratio may be 
assumed to be 0.571. Calculate the following. 

 
 The dryness fraction, specific volume and specific enthalpy at the throat. 
 (Answers 0.958, 0.23 m3/kg and 2683 kJ/kg) 
 
 The velocity and cross sectional area at the throat and exit. 
 (Answers 462.6 m/s , 497 mm2, 1163 m/s and 73.2 cm2.) 
 
 The overall isentropic efficiency. 
 (Answer  96.6%) 
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4.  A jet engine is tested on a test bed.  At inlet to the compressor  the  air  is  at 1 bar 

and 293 K and has negligible velocity. The air is compressed adiabatically to 4 bar 
with an isentropic efficiency of 85%.  The compressed air is heated in a combustion 
chamber to 1175 K. It is then expanded adiabatically in a turbine with an isentropic 
efficiency of 87%. The turbine drives the compressor. The gas leaving the turbine 
is expanded further reversibly and adiabatically through a convergent nozzle. The 
flow is choked at exit. The exit area is 0.1 m2. 

 
 Determine the following. 
 
 The pressures at the outlets of the turbine and nozzle. 
 (Answers 2.38 bar and 1.129 bar) 
 
 The mass flow rate. (Answer 27.2 kg/s) 
 The thrust produced. (Answer 17 kN) 
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5. Dry saturated steam expands through a convergent-divergent nozzle. The inlet and 

outlet pressures are 7 bar and 1 bar respectively at a rate of 2 kg/s. The overall 
isentropic efficiency is 90% with all the losses occurring in the divergent section. It 
may be assumed that γ = 1.135 and 
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 Calculate the areas at the throat and exit. (Answers 19.6 cm2 and 38.8 cm2). 
 
 The nozzle is horizontal and the entry is connected directly to a large vessel 

containing steam at 7 bar. The vessel is connected to a vertical flexible tube and is 
free to move in all directions. Calculate the force required to hold the receiver static 
if the ambient pressure is 1.013 bar. 

 (Answer 3.868 kN) 
 
 


