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THERMODYNAMICS  

TUTORIAL 5 

HEAT ENGINES AND THE 2
nd

 LAW of THERMODYNAMICS 

 

This tutorial is set at QCF Level 4 to 5 

 

On completion you should be able to: 

 

 Explain the thermodynamic concepts of a heat engine 

 Explain the importance of the second law of thermodynamics in engineering process 

analysis 

 Define and evaluate the entropy substances 

 Evaluate changes of entropy in reversible and irreversible thermodynamic processes. 

 Apply what you have learned to Thermodynamic processes - constant pressure; constant 

volume; isothermal; adiabatic; polytropic. 
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1. Introduction 

 

This tutorial introduces you to some very important fundamental principles in Thermodynamics. The 

second Law of Thermodynamics has profound consequences in the wider field of physics but here we 

are concerned with its meaning in the study of heat engines and the important property of Entropy 

that has not been discussed before in these tutorials. Let us start by considering an idealised model of 

a heat engine. 

 

2. Heat Engines and Comparison to Other Engines 

 

There are various forms of engines. For example a hydraulic engine converts gravitational energy 

(also known as pressure energy, flow energy or potential energy) into work or power. An electric 

motor or engine converts electrical energy into work or power. A heat engine is one that converts 

heat into work or power. 

 
 

The diagram below illustrates an idealised model comparison. 

 

 
2.1 Efficiency 

 

The Efficiency of an engine is defined as  

              
    

               
 

 

Note the symbol is the Greek letter Eta      Now let's compare the efficiency formulae for these 

engines 
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Hydraulic Motor 

 

Fluid power is transported by the flow Q m
3
/s. The energy contained in a volume Q m

3
 of liquid at a 

pressure p is the flow energy given by the expression pQ. The hydraulic motor requires a source of 

liquid at a high pressure p1 and exhausts at a lower pressure p2. The energy supplied is p1Q and some 

of this is converted into work. The energy in the low pressure liquid is p2Q. For a perfect motor with 

no losses due to friction, the law of energy conservation gives the work output and efficiency as 

follows. 

                      
 

              
    

               
 

        

   
 

       

  
   

  

  
 

 

Electric Motor 

 

Electric power is transported by the current. Electrical energy is the product of  the charge Q 

Coulombs and the electric potential V Volts. The energy input at a high voltage is V1Q and the 

energy exhausted at low voltage is V2Q. For a perfect motor with no losses due to friction, the work 

output and efficiency are found from the law of energy conservation as follows. 

 

                      
 

              
    

               
 

        

   
 

       

  
   

  

  
 

 

Heat Motor 

 

Temperature is by analogy the equivalent of pressure and electric potential. In order to complete the 

analogy, we need something that is equivalent to volume and electric charge that transports the 

energy. It is not difficult to visualise a volume of liquid flowing through a hydraulic motor. It is not 

impossible to visualise a flow of electrons bearing electric charge through an electric motor. It is 

impossible to visualise something flowing through our ideal heat engine that transports pure heat but 

the analogy tells us there must be something so let us suppose a new property called Entropy and 

give it a symbol S.  Entropy must have units of energy per degree of temperature or Joules per 

Kelvin. Entropy is dealt with more fully later on. 

 

The energy supplied at temperature T1 is T1S and the energy exhausted is T2S. For a perfect motor 

with no losses due to friction, the law of energy conservation gives the work output and efficiency as 

follows. 

                      
 

              
    

               
 

        

   
 

       

  
   

  

  
 

 

Note that if p2 or V2 or T2 are zero we theoretically have an efficiency of 1 or 100% 

 

In a perfect motor the energy conversion process is 100% efficient but we may not have converted all 

the energy supplied into work and unused energy may be wasted into the sink. In the case of the 

electric motor, the lowest value for V2 (so far as we know) is ground voltage zero, so theoretically we 

can obtain 100% efficiency by exhausting the electric charge with no residual energy. 

 

In the case of the hydraulic motor, the lowest pressure we can exhaust to is atmospheric pressure so 

we always waste some energy in the exhausted liquid as it is impossible to exhaust at absolute zero 

pressure. 
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In the case of the heat engine or motor, the lowest temperature to which we can exhaust is ambient 

conditions, typically 300 K, so there is a lot of residual energy in the exhaust. Only by exhausting to 

absolute zero, can we extract all the energy. 

 

2.2. Model Heat Engine 

 

A model heat engine is usually represented by the following diagram. (Note that the word engine is 

usually preferred to motor). 

 
The energy transfer from the hot source is Qin Joules.  

The energy transfer rate from the hot source is in Watts. 

The energy transfer to the cold sink is Qout Joules and the energy transfer rate is out Watts. 

The work output is W Joules and the power output is P Watts. 

 

By considering the total conservation of energy, it follows that the energy converted into work must 

be 

              W = Qin - Qout   Joules or P = in - out Watts 

 

The efficiency of any machine is the ratio Output/Input so the thermal efficiency of a heat engine 

may be developed as follows. 

                
 

   
                                   

        

   
   

    

   
 

 

In terms of energy transfer rates is Watts this is  

      
   

  
 

 

It follows from our analogy that Qin = ST1 and Qout =ST2 and confirms 

 

    
  

  
 

 

 

 SELF ASSESSMENT EXERCISE No. 1 

 

1. A heat engine is supplied with 60 MW of energy and produces 20 MW of power. What is the 

thermal efficiency and the heat lost? 

 

2. A heat engine is supplied with 40 kJ of energy that it converts into work with 25% efficiency. 

What is the work output and the heat lost? 
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3. Reversibility 

 

Let’s look at a hydraulic analogy of a reversible process. A simple version of this is used to save 

water on a lock for lowering and raising boats from one level to another. 

 

Starting with an empty lock, it is filled to the top from the source with a quantity of water Q. The 

level in the lock is then lowered by emptying it in stages discharging equal amounts into the 

reservoirs (holding tanks) and the last water is drained into the sink and lost. In order to refill the 

lock, the reservoirs are opened one at a time putting back the water stored but this does not raise the 

level back to top and water has to be added from the source to replace that lost in the sink. In the 

example illustrated there are 5 stages and you can see that 80% of the water, and hence the energy is 

recovered so the process is 80% efficient and 80% reversible. 
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Now consider the equivalent thermodynamic system. In the illustration a central body is exposed to a 

source of heat at the hottest temperature Thot and heated up to that temperature. The body is then 

cooled in stages by rotating the shield and allowing it to give up heat to thermal storage reservoirs at 

lower temperatures and finally it is cooled to the lowest temperature Tcold when it reaches the sink. In 

this example ¼ of the heat supplied (¼  Qin) is lost to the sink (Qout). If the process is reversed heat is 

given back to the central body in stages raising the temperature but in order to get back to Thot Q/4 

must be added from the source. 75% of the heat is recovered and the process is 75% efficient and 

75% reversible. 

 
You might realise that in both examples the efficiency and reversibility of the process depend on the 

number of intermediate stages. More and smaller steps would give a smaller temperature drop each 

time and would increase the efficiency. One step would be zero efficient and totally irreversible. An 

infinite number of steps would be 100% efficient and fully reversible. In this case the temperature 

difference would be zero for each step and this is impractical. 

 

If we could transfer heat back and forth at constant temperature then the process would be 

isothermal. This can happen when a substance is both liquid and vapour and adding heat causes some 

of the liquid to evaporate or removing heat causes some of the vapour to condense. This does happen 

at constant temperature (the boiling point). 
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A more practical way of transferring heat isothermally to or from a gas is to combine it with doing 

work. If we heat a gas the temperature will change and the gas will expand. If we let the expansion do 

work say by moving a piston as illustrated, then any temperature change is reduced by extracting 

work energy and in this way the expansion can be isothermal obeying the gas law pV = C. 

 

The reverse of this is an isothermal compression. 

 

 
 

 

3. The Carnot Principle 

 

Sadi Carnot (born 1796) reasoned that if an engine used isothermal 

expansions and compressions, then the efficiency of the engine would 

be the maximum possible. 

 

Let’s now consider that such an engine works between a source at 

temperature Th and a sink at temperature Tc. Heat passes to the engine 

isothermally and work is extracted from the engine. The remainder of 

the energy is rejected to the sink. This is idealised as shown. 

 

The first Law of Thermodynamics tells us that: 

 

 Qin = Wout + Qout and  Wout = Qin - Qout 

 

The efficiency of the engine at converting heat into work is the thermal efficiency: 

 

    
    

   
 

        

   
   

    

   
 

 

The heat transfer is directly proportional to the temperatures so Carnot reasoned that the maximum 

possible efficiency of a heat engine is: 

 

              
  

  
 

 

These led physicists to realise that there must be an absolute scale of temperature. Clearly the value 

of the above equation is different if 
o
C is used instead of the absolute temperature in Kelvins. 
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4. The Second Law of Thermodynamics 

 

This is not a law that can simply be written down as an equation. One of the main outcomes of the 

law is: 

No heat engine can have a thermal efficiency of 100%  

 

In fact they come nowhere near to 100% 

 

The forgoing work raises many questions and leads us to consider a new fluid property called 

Entropy. Another outcome of the law is: 

 

Every action increases the entropy of the universe 

 

This needs a lot more explaining and even involves the idea of the direction of time but we will only 

look at the use in thermodynamics. 

 

The idea that heat can only be transferred back and forth between two bodies with 100% efficiency 

and be 100% reversible is clearly impossible to achieve. 

 

We understand that no engine can give out more work than the heat it receives and that no engine can 

function without losing some heat to the sink. In other words no heat engine can exceed nor equal 

100% efficiency. The best possible is that given by: 

 

      
  

  
 

 

The 2
nd

 Law also leads to concepts of absolute temperature and Entropy. We will now see what is 

involved in devising an engine cycle to convert heat into a nett amount of work. 

 

 

 WORKED EXAMPLE No. 1 

 

 Calculate the efficiency for a theoretical Carnot engine that is supplied with heat at 1 200
o
C and 

rejects heat to a sink at 20
o
C 

 

 SOLUTION 

          
  

  
   

      

        
   

   

    
     

 The efficiency is 80% 

 

 WORKED EXAMPLE No. 2 

 

 A heat engine draws heat from a combustion chamber at 300
o
C and exhausts to atmosphere at 

10
o
C. What is the maximum possible thermal efficiency that could be achieved theoretically? 

 

 SOLUTION 

 

 The maximum efficiency possible is the Carnot efficiency. Remember to use absolute 

temperatures. 

          
  

  
   

      

       
   

   

   
       

 

 The maximum possible efficiency is 50.5% 
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 SELF ASSESSMENT EXERCISE No. 2 

 

1. A heat engine works between temperatures of 1 100oC and 120oC. 

  It is claimed that it has a thermal efficiency of 75%. Is this possible? 

 (Answer the maximum efficiency cannot exceed 71%) 

 

2. Calculate the Carnot efficiency for an Engine working between 1 200oC and 200o C. 

 (Answer 67.9%) 

 

 

 

7. Entropy 

 

7.1  Definition 

 

You should already be familiar with the theory of work laws in closed 

systems. You should know that the area under a pressure-volume 

diagram for a reversible expansion or compression gives the work 

done during the process. This might take us to the idea that there is a 

property which can be plotted against temperature such that the area 

under the graph gives us the heat transfer Q. This property is entropy. 

The symbol for entropy is S and for specific entropy s. 

 

Consider a p - V and T- S graph for a reversible expansion. 

 
From the p - V graph we have 

                

 From the T- s graph we have 

        

This is the way entropy was developed for thermodynamics and from 

the above we get the definition: 

   
  

 
 

 

The units of entropy are J/K  and for specific entropy J/kg K 

 

It should be pointed out that there are other definitions of entropy but this one is the most meaningful 

for thermodynamics. A suitable integration will enable you to solve the entropy change for a fluid 

process. 
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8. Entropy Changes for a Perfect Gas in Closed Systems 

 

Consider a closed system expansion of a fluid against a piston with heat and work transfer taking 

place. 

 
Applying the non-flow energy equation we have 

Q + W = U 

Differentiating we have 

dQ + dW = dU 

Since dQ = TdS and dW = -pdV then 

TdS - pdV = dU 

 

TdS = dU + pdV 

 

This expression is the starting point for all derivations of entropy changes for any fluid (gas or 

vapour) in closed systems. It is normal to use specific properties so the equation becomes 

 

T ds = du + p dv 

 

From the gas law pv = RT  we may substitute for p and the equation becomes 

 

            
  

 
 

 

Rearranging and substituting du = cv dT we have 

      
  

 
   

  

 
      

 

s is specific entropy  v is specific volume. u is specific internal energy. 

 

8.1  Isentropic Processes 

 

The word Isentropic means constant entropy and this is a very 

important thermodynamic process. It occurs in particular when a 

process is reversible and adiabatic. This means that there is no heat 

transfer to or from the fluid and no internal heat generation due to 

friction. In such a process it follows that if dQ is zero then dS must be 

zero. Since there is no area under the T-S graph, then the graph must 

be a vertical line as shown. 

 

There are other cases where the entropy is constant. For example, if there is friction in the process 

generating heat but this is lost through cooling, then the nett result is zero heat transfer and constant 

entropy. You do not need to be concerned about this at this stage. 

 

Entropy is used in the solution of gas and vapour problems. We should now look at practical 

applications of this property and study the entropy changes which occur in closed and steady flow 

systems for perfect gases and vapours. 
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8.2  Isothermal Process 

 
 

In this case temperature is constant.  Starting with equation (1)  

 

     
  

 
   

  

 
 

Since dT = 0 then 

             
  

  
 

 

A quicker alternative derivation for those familiar with the work laws is: 

 

                          
 

         
  

  
                     

T is constant so  
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8.3  Constant Volume Process 

 

 
 

Starting again with equation (1) we have 

     
  

 
   

  

 
 

 

In this case d  = 0 so 

     
  

 
 

 

Integrating between limits (1) and (2) 

        
  

  
 

 

8.4 Constant Pressure Process 

 
Starting again with equation (1) we have 

     
  

 
   

  

 
 

In this case we integrate and obtain 

       
  

  
     

  

  
 

 For a constant pressure process,  
 

 
                

  

  
 

  

  
 

The expression becomes 

       
  

  
     

  

  
          

  

  
      

  

  
 

 

It was shown in an earlier tutorial that R = cp - cv 
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8.5 Polytropic Process 

 

This is the most difficult of all the derivations here. Since all the forgoing are particular examples of 

the polytropic process then the resulting formula should apply to them also. 

 
The polytropic expansion is from (1) to (2) on the T- s diagram with different pressures, volumes and 

temperatures at the two points. The derivation is done in two stages by supposing the change takes 

place first at constant temperature from (1) to (A) and then at constant pressure from (A) to (2). You 

could use a constant volume process instead of constant pressure if you wish. 

 

s2 - s1 = (sA- s1) - (sA- s2) = (sA- s1) + (s2 - sA) 

 

For the constant temperature process 

          
  

  
 

For the constant pressure process 

          
  

  
 

Hence 

            
  

  
     

  

  
 

Since pA =  p2 and TA= T1 then 

            
  

  
     

  

  
 

Divide through by R 
  

 
   

  

  
 

  

 
  

  

  
 

 

From the relationship between cp, cv, R and   we have 

 
  

 
 

 

   
 

Hence  

  

 
   

  

  
 

 

   
  

  

  
   

  

  
 
  

  
 

 
   

 

 

This formula is for a polytropic process and should work for isothermal, constant pressure, constant 

volume and adiabatic processes also. In other words, it must be the derivation for the entropy change 

of a perfect gas for any closed system process. 
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 WORKED EXAMPLE No. 3 

 

 A perfect gas is expanded from 5 bar to 1 bar by the law pV
1.2 

= C. The initial temperature is 

200
o
C. Calculate the change in specific entropy. 

 R = 287 J/kg K   =1.4. 
 

 SOLUTION 

 

       
 

 
 
  

 
   

         

 

  

 
   

  

  
 
  

  
 

 
   

       
     

   
 

   
     

      

 

                          

  

 

 

 SELF ASSESSMENT EXERCISE No. 3 

 

1. Calculate the specific entropy change when a perfect gas undergoes a reversible isothermal 

expansion from 500 kPa to 100 kPa. R = 287 J/kg K.  

 (Answer +461.9 J/kg K). 

 

2. Calculate the total entropy change when 2 kg of perfect gas is compressed reversibly and 

isothermally from 9 dm3 to 1 dm3. R=300 J/kg K. (Answer -1.32 kJ/k) 

 

3. Calculate the change in entropy when 2.5 kg of perfect gas is heated from 20oC to 100oC at 
constant volume. Take cv= 780 J/kg K   (Answer 470 J/K) 

 

4. Calculate the total entropy change when 5 kg of gas is expanded at constant pressure from 30oC 

to 200oC. R = 300 J/kg K  cv= 800 J/kg K   (Answer 2.45 kJ/K) 

 

5. A perfect gas is expanded from 5 bar to 1 bar by the law pV 
1.6

 = C. The initial temperature is 

200
o
C. Calculate the change in specific entropy.  

 R = 287 J/kg K   =1.4.  (Answer -144 J/kg K) 
 

6. A perfect gas is expanded reversibly and adiabatically from 5 bar to 1 bar by the law pV

 = C. The 

initial temperature is 200oC. Calculate the change in specific entropy using the formula for a 

polytropic process. R = 287 J/kg K    =1.4.  (The answer should be zero since the process is 

constant entropy). 

 

 

If you want to solve problems involving vapours, especially steam, you need to become familiar 

with property charts in order to sketch the process and evaluate the properties using entropy. This 

is covered next.  
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9. Temperature - Entropy (T- s) Diagram for Vapours 

 

If you plot the specific entropy for saturated liquid (sf) and for dry saturated vapour (sg) against 

temperature, you would obtain the saturation curve. Lines of constant dryness fraction and constant 

pressure may be shown. The diagram below   is for steam. 

 

 
 

9.1 Specific Enthalpy-Specific Entropy (h-s) Diagram. 

 

This diagram is especially useful for steady flow processes. The diagram is obtained by plotting hg 

against sg and hf against sf to obtain the characteristic saturation curve. The two curves meet at the 

critical point C. Lines of constant pressure, temperature and dryness are superimposed on the 

diagram. This is an extremely useful chart and it is available commercially. If any two coordinates 

are known, a point can be obtained on the chart and all other relevant values may be read off. h –s 

charts are especially useful for solving isentropic processes because the process is a vertical line on 

this graph.  
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9.2. Isentropic Processes with Steam 

 

The word Isentropic means constant entropy and this is a very important thermodynamic process. It 

occurs in particular when a process is reversible and adiabatic. This means that there is no heat 

transfer to or from the fluid and no internal heat generation due to friction. In such a process it 

follows that if dQ is zero then dS must be zero. Since there is no area under the T-S graph, the graph 

must be a vertical line. 

 

There is another case where the entropy is constant. For example, if there is friction in the process 

generating heat but this is lost through cooling, then the nett result is zero heat transfer and constant 

entropy. You do not need to be concerned about this at this stage. 

 

 

 

 WORKED EXAMPLE No. 4 

 

 Steam at 2 bar and 150oC is expanded reversibly and adiabatically to 1 bar. Calculate the final 

dryness fraction and the enthalpy change. 

 

 SOLUTION 

  

 h1 at 2 bar and 150oC = 2 770 kJ/kg 

 

 s1 at 2 bar and 150oC  is 7.280 kJ/kg K. 

 

 Because the process is adiabatic and reversible, the entropy remains the same. 

 

 s2 at 1 bar and assumed wet is sf + xsfg = s1 

 

 7.280 = 1.303 + x(6.056) 

 

 x= 0.987 

 

 h2  at 1 bar and 0.987 dry = hf + x hfg  

 

 h2 = 417 + 0.987(2258) = 2645.6 kJ/kg 

 

 h = 2 645.6 – 2 770 = -124.4 kJ/kg 
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 WORKED EXAMPLE No. 5 

 

 A steam turbine expands 60 kg/s from 40 bar and 300oC to 4 bar reversibly and adiabatically 

(isentropic). Calculate the theoretical power output. 

 

 SOLUTION 

   

  + P =E per second   (S F E E) 

 

 The process is adiabatic.  = 0 and the only energy term to use is enthalpy. 
 

 P = H  per second. 

 

 h1 at 40 bar and 300oC = 2 963 kJ/kg 

 

 s1 at 40 bar and 300oC  is 6.364 kJ/kg K. 

 

 s2 at 4 bar and assumed wet is sf + xsfg = s1 

 

 6.364= 1.776 + x(5.121) 

 

 x = 0.896 

 

 h2  at 4 bar and 0.896 dry = hf + x hfg  

 

 h2 = 605 + 0.896(2 134) = 2 517 kJ/kg 

 

 P = H  per second = 60(2 517- 2 963) = -26 756 kW (out of system) 
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 SELF ASSESSMENT EXERCISE No. 4 

 

1. A turbine expands 40 kg/s of steam from 20 bar and 250oC reversibly and adiabatically to   

0.5 bar. Calculate the theoretical power output.  

 

 

2. A turbine expands 4 kg/s of steam from 50 bar and 300oC reversibly and adiabatically to      

0.1 bar. Calculate the theoretical power output. 

 

 

3. A turbine expands 20 kg/s of steam from 800 bar and 400oC reversibly and adiabatically to   

0.2 bar. Calculate the theoretical power output.  

 

 

4. A turbine expands 1 kg/s of steam reversibly and adiabatically. The inlet conditions are 10 bar 

and dry saturated. The outlet pressure is 3 bar. Calculate the theoretical power output.  
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10. Isentropic Efficiency 

 

In processes involving the expansion and compression of gas and vapour friction has an 

important effect that has to be taken into account when solving problems involving engine 

cycles. It also has to be considered in other processes such as expansion in a nozzle. Real gases 

do not behave exactly like ideal gases and the molecules do not move around freely but convert 

energy into internal heat and this will 

 

 generate heat which is in effect a heat transfer, 

 increase the entropy, 

 make the final enthalpy bigger than it would otherwise be, 

 make the final temperature bigger than it would otherwise be if it is a gas or 

superheated vapour, 

 

An adiabatic process with friction has no external heat transfer ( Watts  or Q Joules) but the 
internal heat generated causes an increase in entropy. This is illustrated on the T - s sketches 

below. Consider the expansion and compression processes on figure A and B. Note that a 

compression or expansion might cross the saturation curve from wet vapour to gas or vice versa 

or it may stay entirely as a gas. 

 
Figure A        Figure B 

 

The same points are also apparent on the h - s diagram used with steam (or other vapours). The 

figure shows a vapour expansion from (1) to (2) with the ideal being from (1) to (2'). Note how it 

ends up dryer at the same pressure with an increase in entropy. Vapour is not normally 

compressed so this is not shown. 
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The ideal change in enthalpy is h2'  -  h1 The actual change is h2 - h1 

 

The isentropic efficiency is defined as 

 

    
          

         
 

     

      
                  

 

    
         

          
 

      

     
                   

 

In the case of a perfect gas h = cpT  hence 

 

    
          

         
 

     

      
                  

 

      
         

          
 

      

     
                   

 

 

Note that for an expansion this produces a negative number on the top and bottom lines that 

cancels out. 
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 WORKED EXAMPLE No. 6 

 

 A steam turbine takes steam at 70 bar and 500oC and expands it to 0.1 bar with an isentropic 

efficiency 0.9. The process is adiabatic. 

 

 The power output of the turbine is 35 MW.  Determine the enthalpy at exit and calculate the 

flow rate of steam in kg/s. 

 

 Note you need the tables and h-s chart for steam. 

 

 SOLUTION 

 

 h1= 3 410 kJ/kg  (tables) s1= 6.796 kJ/kg K for an ideal expansion s1=s2' 

 

 Assuming that the steam becomes wet during the expansion, then 

 s2'= sf +x'sfg. at 0.1 bar 

 6.796 = 0.649 + x' 7.500 (tables) x' = 0.8196 

 

 Note if x' is larger than 1 then the steam is still superheated and the solution does not involve 

x. 

 

 Now find h2'. h2' = hf + x'hfg. at 0.1 bar 

 

 h2' = 192 + (0.8196)(2392) = 2 152.2 kJ/kg. 

 

 Ideal change in enthalpy  h' =2 152.2 – 3 10 = -12 57.5 kJ/kg 
 

 Actual change in enthalpy  h = 0.9(-1 257.5) = - 1 131.7 kJ/kg 

 Actual change in enthalpy  h =  (h2 - h1) = -1 131.7 kJ/kg 

 

 h2 – 3 410 = -1 131.7 kJ/kg 

 

 h2 = 2 278.3 kJ/kg 

 

 From the steady flow energy equation (with which you should already be familiar) we have   

 

  + P = H/s 
 

 Since there is no heat transfer then  this becomes   

 

 P =  H/s =    (h2 - h1) =     (-1 131.7) = -35 000 kW    

 

 hence       = 30.926 kg/s 
 

 (Note the sign convention used here is negative for energy leaving the system) 
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 WORKED EXAMPLE No. 7 

 

 A gas turbine expands gas from 1 MPa pressure and 600oC to 100 kPa pressure. The 

isentropic efficiency is 0.92. The mass flow rate is 12 kg/s. Calculate the exit temperature 

and the power output. 

 

 Take cv = 718 J/kg K and cp = 1 005 J/kg K 

 

 SOLUTION 

 

 The process is adiabatic so the ideal temperature T2' is given by 

 

 T2' = T1(rp)
1-1/

 

 

 rp is the pressure ratio rp = p2/p1 = 0.1 

 

  = cp /cv = 1.005/0.718 = 1.4 

 

 T2' = 873(0.1)
1-1/1.4 

= 451.9 K 

 

 Now we use the isentropic efficiency to find the actual final temperature. 

 

    
     

      
 

 

     
      

         
 

 

T2 = 485.6 K 

 

 Now we use the SFEE to find the power output. 

 

  + P =   cp(T2 - T1) 

 

 The process is adiabatic  = 0. 

 

 P = 12(1.005)(485.6 - 873) = - 4 672 kW (out of system) 
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 SELF ASSESSMENT EXERCISE No. 5 

 

1.  Steam is expanded adiabatically in a turbine from 100 bar and 600oC to 0.09 bar with an 

isentropic efficiency of 0.88. The mass flow rate is 40 kg/s. 

 

 Calculate the enthalpy at exit and the power output.   

 (Ans. 51 MW) 

 

2. A gas compressor compresses gas adiabatically from 1 bar and 15oC to 10 bar with an 

isentropic efficiency of 0.89. The gas flow rate is 5 kg/s.  

 

 Calculate the temperature after compression and the power input.   

 (Ans. -1.513 MW) 

 

 Take cv = 718 J/kg K and cp = 1 005 J/kg K 

 

3.  A turbine is supplied with 3 kg/s of hot gas at 10 bar and 920oC. It expands adiabatically to 

1 bar with an isentropic efficiency of 0.92. Calculate the final temperature and the power 

output. cp = 1.005 kJ/kg K    = -1.4 

 (663 K and 1.6 MW) 

 

4.  A turbine is supplied with 7 kg/s of hot gas at 9 bar and 850oC that it expands adiabatically 

to 1 bar with an isentropic efficiency of 0.87. Calculate the final temperature and the power 

output. cp = 1.005 kJ/kg K    = 1.4 

 (667 K and 3.2 MW) 

  

 

 


