THERMODYNAMICS
 TUTORIAL 13
 REFRIGERATION AND HEAT PUMPS

This tutorial is set at QCF Level 5 to 6
$>$ On completion of this tutorial you should be able to:
$>$ Analyse vapour compression refrigeration cycles including
$>$ Explain the elements of simple ammonia-water absorption cycle.
$>$ Apply the principles of the heat pump and evaluate its application possibilities.

Contents

1. Introduction
2. Refrigerants
3. Tables and Charts
4. Vapour Compression Cycles
4.1 Basic Cycle
4.2 Practical Cycle
4.3 Coefficient of Performance
4.3.1 Refrigerator
4.3.2 Heat Pump
5. Model Reversed Heat Engine
6. Isentropic Efficiency
7. Modified Cycles
8. Reciprocating Compressors
9. Ammonia Absorption Cycle

1. Introduction

It is possible to lower the temperature of a body by use of the thermo-electric affect (reversed thermo-couple or Peltier effect). This has yet to be developed as a serious refrigeration method so refrigerators still rely on a fluid or refrigerant which is used in a reversed heat engine cycle. The layout of a typical refrigerator is illustrated below.

Figure 1
Heat is absorbed into a cold fluid (this is usually an evaporator) lowering the temperature of the surroundings. The fluid is then compressed and this raises the temperature and pressure. At the higher temperature the fluid is cooled to normal temperature (this is usually a condenser). The fluid then experiences a drop in pressure which makes it go cold (this is usually a throttle valve) and able to absorb heat at a cold temperature. The cycle is then repeated.

Various fluids or refrigerants are used in the reversed thermodynamic cycle. Refrigerants such as air, water and carbon dioxide are used but most refrigerants are those designed for vapour compression cycles. These refrigerants will evaporate at cold temperatures and so the heat absorbed is in the form of latent energy. Let's look at the properties of these and other refrigerants.

2. Refrigerants

Refrigerants are given R numbers. Carbon dioxide, for example is R744. Some of them are dangerous if released because they are either explosive or toxic. The toxicity and flammability are classified according to international standards such as ISO 187.

In the past the most popular fluids have been ammonia (R717), fluorocarbons and halocarbons. The most popular of these is R 12 or dichlorodifluoromethane $\left(\mathrm{CF}_{2} \mathrm{Cl}_{2}\right)$. Because these have been found to be environmentally unfriendly they have been replaced in common use by more eco friendly fluids such as R22 and R134a which has similar properties to R12.

The type of refrigerant used in a cycle is largely governed by the evaporation temperature required and its latent capacity. Below is a list of some of them.

Refrigerant	R number	Evaporation temp. at 1.013 bar.(oC)
$\mathrm{C} \mathrm{Cl}_{3} \mathrm{~F}$	R 11	24
$\mathrm{C} \mathrm{Cl}_{2} \mathrm{~F}_{2}$	R 12	-30
$\mathrm{C} \mathrm{ClF}_{3}$	R 13	-82
$\mathrm{C} \mathrm{F}_{4}$	R 14	-128
$\mathrm{CH} \mathrm{Cl}_{2} \mathrm{~F}$	R 21	9
$\mathrm{CH} \mathrm{Cl} \mathrm{F}_{2}$	R 22	-40
$\mathrm{CH} \mathrm{F}_{3}$	R 23	-84
$\mathrm{C} \mathrm{Cl}_{2} \mathrm{FC} \mathrm{Cl} \mathrm{F}_{2}$	R 113	47
$\mathrm{C} \mathrm{Cl}_{2} \mathrm{FC} \mathrm{F}_{3}$	R 114 A	3
$\mathrm{C} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{Cl} \mathrm{F} 2$	R 114	3
$\mathrm{C} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{C} \mathrm{F}$	R 115	-39
$\mathrm{CH} 2 \mathrm{FCF3}$	R 134 a	-26.3

All the above are Halo-Carbons and Fluro-carbons which are non-flammable and may be detected by a halide torch or electric cell sensor. Other refrigerants are shown below.

Ammonia is flammable and detected by going white in the presence of sulphur dioxide. It has a strong characteristic pungent smell.
$\mathrm{NH}_{3} \quad \mathrm{R} 717 \quad-33$

Carbon Dioxide is safe and non-toxic but it can suffocate.
$\begin{array}{lll}\mathrm{CO}_{2} & \mathrm{R} 744 & -78\end{array}$
Sulphur Dioxide is highly toxic and does not burn.
Other refrigerants are in the Hydro-Carbon groups such as Propane, Butane and Ethane. These are explosive. Because of the problems with damage to the ozone layer, new refrigerants such as R134a have been developed and are now included in the thermodynamic tables.

Now let's look at the use of thermodynamic tables for refrigerants.

3. Tables and Charts

The section of the fluid tables devoted to refrigerants is very concise and contains only two superheat temperatures. The layout of the tables is shown below.

							10K		20 K	
t	p_{S}	$v g$	h_{f}	h_{g}	$s f$	$s g$	h	s	h	s

t is the actual temperature in degrees Celsius.
p_{s} is the saturation pressure corresponding to the temperature.
It follows that if the refrigerant is wet or dry saturated, it must be at temperature t and pressure p_{s}. If the refrigerant has 10 degrees of superheat, then the actual temperature is $\mathrm{t}+10$ and the properties are found under the 10 K heading. Similarly if it has 20 K of superheat, its actual temperature is $\mathrm{t}+20$.

For example, R134a at 2 bar and $10^{\circ} \mathrm{C}$ must have 20 K of superheat since its saturation temperature would is $-10^{\circ} \mathrm{C}$.

From the 20 K columns we find that $\mathrm{h}=409.67 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{s}=1.7956 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
When dealing with liquid refrigerant, take the properties as h_{f} and s_{f} at the given temperatures. The pressures are never very high so the pressure term will not cause much error.

Web Sites for finding the properties of refrigerants may be found by clicking on the links below.

Peace software (free but limited scope)
wisc (free but gives values different from Rogers and Mayhew explained below) ethermo (values are same as in Rogers and Mayhew but limited access)

In an examination you may need a set of Tables. Fluid property charts that are best for finding properties are the pressure - enthalpy ($\mathrm{p}-\mathrm{h}$) chart but this never seems to be used in examinations but they are very useful for drawing the thermodynamic cycles. You can find them with a web search such as the one below for R134a.

An important point to note is that you will different versions of the chart and tabulated values for enthalpy.

This is because different datum states are used being either $-40^{\circ} \mathrm{C}$ (because $-40^{\circ} \mathrm{F}$ is the same temperature) or $0^{\circ} \mathrm{C}$. The changes in enthalpy will be the same whichever is used but you must be consistent and use the same set of tables or the same chart to solve problems.

You can obtain $\mathrm{p}-\mathrm{h}$ charts from the internet. Below is a chart for R 134 a is from the internet. Values obtained from web sites will vary with the chosen datum so be consistent which one you use. Here is a good link for charts.
hvac-eng

Figure 2a
The chart above is compatible with values in Rogers and Mayhew tables. Another simpler version of this chart is shown below but notice that the values are different. This does not matter if you do not mix up values from different sources.

Figure 2b
© D. J Dunn www.freestudy.co.uk

4. Vapour Compression Cycle

4.1 The Basic Cycle

Refrigeration/heat pump cycles are similar to heat engine cycles but they work in reverse and are known as reversed heat engine cycles.

A basic vapour cycle consists of four processes.

Isentropic compression (1 to 2)

Constant pressure cooling (2 to 3)
Isentropic expansion (3 to 4) and

Figure 3

You may recognise this as a reverse of the Rankine cycle or even the reverse of a Carnot cycle. The heating and cooling will involve evaporation and condensing. Let's consider the cycle first conducted entirely with wet vapour.

The basic principle is that the wet vapour (point 1) is compressed and becomes dryer and warmer in the process (point 2). It is then cooled and condensed into a wetter vapour at the higher pressure (point 3). The vapour is then expanded. Because of the cooling, the expansion back to the original pressure produces a fluid which is much colder and wetter than it was before compression (point 4). The fluid is then able to absorb heat at the cold temperature becoming dryer in the process and is returned to the original state (point 1) and compressed again. The net result is that heat is absorbed at a cold temperature and rejected at a higher temperature. Work is needed to drive the compressor but some of it is returned by the turbine. The thermodynamic cycle for refrigerators is often shown on a pressure - enthalpy diagram ($\mathrm{p}-\mathrm{h}$).

Figure 4
The four thermodynamic processes are

1-2 Isentropic compression.
2-3 Constant pressure cooling.
3-4 Isentropic expansion.
4-3 Constant pressure heating.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{in})=\dot{\mathrm{m}}_{\mathrm{r}}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) \\
& \Phi(\text { out })=\dot{\mathrm{m}}_{\mathrm{r}}\left(\mathrm{~h} 3-\mathrm{h}_{2}\right) \\
& \mathrm{P}(\text { out })=\dot{\mathrm{m}}_{\mathrm{r}} \mathrm{r}(\mathrm{~h} 3-\mathrm{h} 4) \\
& \Phi(\mathrm{in})=\dot{\mathrm{m}}_{\mathrm{r}}\left(\mathrm{~h} 4-\mathrm{h}_{1}\right)
\end{aligned}
$$

$\dot{\mathrm{m}}_{\mathrm{r}}=$ mass flow rate of refrigerant.
Note - If the primary object is cool a space we have a Refrigerator but if the primary object is to warm a space then it is a Heat Pump.

4.2. Practical Cycle

In practice wet vapour is difficult to compress and expand so the refrigerant is usually made to be dry or nearly dry at point 1 before being compressed and so ends up superheated at point 2. The cooling process may produce anything from wet vapour to under-cooled liquid at point 3. The expansion of a liquid in a turbine is impractical and so a throttle valve is used instead.

Figure 5
A throttle produces no useful work but it converts the pressure into internal energy. This makes the liquid evaporate and since the saturation temperature goes down it ends up cold. The enthalpy before and after a throttle are the same. The entropy increases over a throttle because of the friction in the process.

The cycle may also be drawn on a temperature entropy diagram as shown. The conditions shown are wet at (1), superheated at (2) and under-cooled at (3) and wet at (4). These conditions vary.

Figure 6

The four thermodynamic processes are
1-2 Isentropic compression

$$
\mathrm{P}(\mathrm{in})=\mathrm{m}_{\mathrm{r}}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)
$$

2-3 Constant pressure cooling

$$
\Phi(\text { out })=\mathrm{m}_{\mathrm{r}}(\mathrm{~h} 3-\mathrm{h} 2)
$$

3-4 Throttle

$$
(\mathrm{h} 3=\mathrm{h} 4)
$$

4-3 Constant pressure heating

$$
\Phi(\mathrm{in})=\mathrm{m}_{\mathrm{r}}\left(\mathrm{~h} 4-\mathrm{h}_{1}\right)
$$

4.3. Coefficient of Performance

The second law of thermodynamics tells us that no heat engine may be 100% efficient. In the reversed cycle, the reverse logic applies and it will be found that more energy is given out at the condenser and more absorbed in the evaporator, than is needed to drive the compressor. The ratio of heat transfer to work input is not called the efficiency, but the coefficient of performance or advantage.

There are two coefficients of performance for such a cycle, one for the refrigeration effect and one for the heat pump effect.

4.3.1 Refrigerator

A refrigerator is a device for removing heat at a cold temperature so we are interested in the heat absorbed in the evaporator Φ (in). The coefficient of performance is also called the advantage and is defined as

$$
\text { C. O.P. }=\frac{\Phi(\mathrm{in})}{\mathbf{P}(\mathrm{in})}
$$

The heat absorbed is called the refrigeration affect.

4.3.2 Heat Pump

A heat pump is a device for producing heat so we are interested in the heat given out from the condenser Φ (out). The coefficient of performance is defined as

$$
\text { C. O.P. }=\frac{\Phi(\text { out })}{\mathrm{P}(\mathrm{in})}
$$

Figure 7 shows the basic set up of a heat pump. The heat pumps need a source of free low grade heat at the evaporator (3) such as a lake, river or deep geothermal source but commonly normal atmospheric air is the source. If warm water such as that expelled from a power station cooling system is available then the system is much more effective.

The condenser (2) is in the space to be heated and this might be a tank of water (4) used in a heating system and thus saving on energy needed to raise the temperature to its operating level. Item (1) is the compressor.

Figure 7

In temperate climates air conditioning units may be used to heat the room when cold and cool the room when hot. This is done with reversing valves. When reversed the condenser becomes the evaporator and the evaporator becomes the condenser.

In simple air conditioning units the heat is simply blown into the room with an air fan.

Figure 8

1. Compressor 2. Condenser 3. Evaporator 4. Fan 5. Reversing valve

5. Model Reversed Heat Engine

The ideal model pumps heat from a cold source to a hot place. The 1st. Law of Thermodynamics applies.

Heat Pump

$$
\begin{aligned}
& \Phi(\mathrm{in})+\mathrm{P}(\mathrm{in})=\Phi(\text { out }) \\
& \text { C. O.P. }(\text { refrigerator })=\frac{\Phi(\mathrm{in})}{\mathrm{P}(\mathrm{in})}=\frac{\Phi(\mathrm{in})}{\Phi(\mathrm{out})-\Phi(\mathrm{in})}
\end{aligned}
$$

If the heat transfers are reversible and isothermal at temperatures $\mathrm{T}_{\text {(hot) }}$ and $\mathrm{T}_{\text {(cold) }}$ then

$$
\text { C. O.P. }(\text { refrigerator })=\frac{T_{\text {cold }}}{T_{\text {hot }}-T_{\text {cold }}}=\frac{T_{\text {cold }}}{T_{\text {hot }}}-1
$$

Figure 9

Heat Pump

$$
\text { C. O.P. }(\text { heat pump })=\frac{\Phi(\text { out })}{\mathrm{P}_{\mathrm{in}}}=\frac{\Phi(\mathrm{out})}{\Phi(\mathrm{out})-\Phi(\mathrm{in})}
$$

Again for reversible isothermal heat transfers this reduces to

$$
\text { C. O.P. (heat pump) }=\frac{\mathrm{T}_{\text {hot }}}{\mathrm{T}_{\mathrm{hot}}-\mathrm{T}_{\text {cold }}}=1-\frac{\mathrm{T}_{\text {hot }}}{\mathrm{T}_{\text {cold }}}
$$

This is the inverse of the Carnot efficiency expression for heat engines.

$$
\begin{aligned}
& \text { C. O.P. }\left(\text { heat pump) }=\frac{\Phi(\mathrm{in})+\mathrm{P}(\mathrm{in})}{\mathrm{P}(\mathrm{in})}=\frac{\Phi(\mathrm{in})}{\mathrm{P}(\mathrm{in})}+1\right. \\
& \text { C. O. P. }(\text { heat pump })=\text { C.O.P. }(\text { refrigerator })+1
\end{aligned}
$$

WORKED EXAMPLE No. 1

A heat pump uses a vapour compression cycle with refrigerant 134a. The heat pump cycle uses an ideal cycle with an evaporator at $5^{\circ} \mathrm{C}$ and a condenser at 13.174 bar. The vapour is dry saturated at inlet to the compressor. The condenser produces under cooled liquid at $45^{\circ} \mathrm{C}$.

Calculate the Coefficient of Performance for the condenser and evaporator.
The plant is to deliver 40 kW of heat. Determine the mass flow rate of refrigerant.

SOLUTION

Figure 10
From the R134a tables we find

$$
\begin{gathered}
\mathrm{h}_{1}=\mathrm{hg}_{\mathrm{g}} @ 50 \mathrm{C}=401.33 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~s} 1=\mathrm{sg} @ 5{ }^{\circ} \mathrm{C}=1.7238 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}=\mathrm{s} 2 @ 13.174 \mathrm{bar}
\end{gathered}
$$

If a $\mathrm{p}-\mathrm{h}$ chart was available, h_{2} could be found easily. Using the tables we can see that 1.7238 occurs between 0 K of superheat and 10 K of superheat. Using linear interpolation we may find the enthalpy as follows at 13.174 bar.

$$
\begin{aligned}
& \begin{array}{lll}
0 \mathrm{~K} & \theta & 10 \mathrm{~K}
\end{array} \\
& \text { s } \quad 1.7073 \\
& 1.7238 \quad 1.7438 \\
& \begin{array}{llll}
\text { h } & 423.47 & \text { h2 } & 435.44
\end{array} \\
& 1.7438-1.7073=0.0365 \\
& 1.7238-1.7073=0.0165 \\
& 435.44-423.47=11,97 \\
& \mathrm{~h}_{2}=423.47+(0.0165 / 0.0365) 11,97=423.47+5.41=428.88 \mathrm{~kJ} / \mathrm{kg} \\
& \text { At (4) the liquid is at } 45^{\circ} \mathrm{C} \text { so it is } 5 \mathrm{~K} \text { under cooled } \\
& \mathrm{h} 3=\mathrm{h} 4=\mathrm{hf} \text { at } 45{ }^{\circ} \mathrm{C}=263.92 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{P}(\mathrm{in})=\mathrm{h}_{2}-\mathrm{h}_{1}=428.88-401.33=27.55 \mathrm{~kJ} / \mathrm{kg} \\
& \Phi(\text { out })=\mathrm{h} 2-\mathrm{h} 3=428.88-263.92=164.96 \mathrm{~kJ} / \mathrm{kg} \\
& \Phi(\mathrm{in})=\mathrm{h}_{1}-\mathrm{h} 4=401.33-263.92=137.41 \mathrm{~kJ} / \mathrm{kg} \\
& \text { C. O. P. }(\text { condenser })=\frac{\Phi(\text { out })}{\mathrm{P}_{\mathrm{in}}}=\frac{164.96}{27.55}=6 \\
& \text { C. O.P. }(\text { evaporator })=\frac{\Phi(\mathrm{in})}{\mathrm{P}_{\mathrm{in}}}=\frac{137.41}{27.55}=5 \\
& \Phi(\text { out })=40 \mathrm{~kW}=\dot{\mathrm{m}}_{\mathrm{r}} \times 164.96 \mathrm{~kJ} / \mathrm{kg} \\
& \dot{\mathrm{~m}}_{\mathrm{r}}=\frac{40}{164.96}=0.242 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

6. Isentropic Efficiency

When the compression is not reversible and isentropic then the isentropic efficiency is used in the usual way for a compression process.

$$
\eta_{i s}=\frac{\text { ideal enthalpy change }}{\text { actual enthalpy change }}
$$

WORKED EXAMPLE No. 3

The power input to the compressor of an ammonia vapour compression plant is 8.2 kW . The mechanical efficiency is 85%. The ammonia is dry saturated at $-6^{\circ} \mathrm{C}$ at inlet to the compressor. After compression the vapour is at 11.67 bar. The compression has an isentropic efficiency of 90%. The condenser produces saturated liquid.

Calculate the following.
i. The flow rate.
ii. The coefficient of performance for the condenser and heat pump. iii. The heat taken in at the refrigerator and delivered by the heat pump

SOLUTION

Figure 11

$$
\begin{array}{cc}
\mathrm{h}_{1}=\mathrm{hf}_{\mathrm{f}} \text { at }-6^{\circ} \mathrm{C}=1437.6 \mathrm{~kJ} / \mathrm{kg} & \mathrm{~h} 3=\mathrm{h}_{4}=\mathrm{hf}_{\mathrm{f}} @ 11.67 \mathrm{bar}=323.1 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~s}_{1}=\mathrm{sf} \text { at }-6^{\circ} \mathrm{C}=5.419 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} & \text { Ideally } \mathrm{s}_{2}=\mathrm{s} 1=5.419 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{array}
$$

From the tables at 11.67 bar we see that the specific entropy is $5.417 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ when there is 50 K of superheat.
This is the ideal condition after compression and the corresponding enthalpy is $1610.5 \mathrm{~kJ} / \mathrm{kg}$.

Ideal change in enthalpy $=1610.5-1437.6=172.9 \mathrm{~kJ} / \mathrm{kg}$.

$$
\text { Actual change }=\frac{172.9}{90 \%}=192.1 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\text { Actual value of } \mathrm{h}_{2}=1437.6+192.1=1629.7 \mathrm{~kJ} / \mathrm{kg}
$$

Power input to cycle $=8.2 \mathrm{~kW} \times 85 \%=6.97 \mathrm{~kW}=\dot{\mathrm{m}}_{\mathrm{r}}(1629.7-1437.6)$

$$
\dot{\mathrm{m}}_{\mathrm{r}}=\frac{6.97}{192.1}=0.0363 \mathrm{~kg} / \mathrm{s}
$$

Heat input to evaporator $=\dot{\mathrm{m}}_{\mathrm{r}}(\mathrm{h} 1-\mathrm{h} 4)=40.44 \mathrm{~kW}$
C. O. P. $($ refrigerator $)=\frac{40.44}{6.97}=5.8$

Heat output at condenser $=\dot{\mathrm{m}}_{\mathrm{r}}(\mathrm{h} 2-\mathrm{h} 3)=470 \mathrm{~kW}$
C. O. P. $($ heat pump $)=\frac{47.4}{6.97}=6.8$

SELF ASSESSMENT EXERCISE No. 1

1. A simple vapour compression refrigerator comprises an evaporator, compressor, condenser and throttle. The evaporator temperature is $-25^{\circ} \mathrm{C}$ and the condenser temperature is $15^{\circ} \mathrm{C}$. The condition at the 4 points in the cycle is as shown.

Point	Condition	Temperature
After evaporator	superheated	10 K of superheat
After compressor	superheated	$25^{\circ} \mathrm{C}$
After condenser	under cooled	$0^{\circ} \mathrm{C}$
After throttle	wet vapour	$-25^{\circ} \mathrm{C}$

The refrigerant is R134a which flows at $0.05 \mathrm{~kg} / \mathrm{s}$. The power input to the compressor is 2 kW . Compression is reversible and adiabatic.

Calculate the following.
i. The coefficient of performance for the evaporator and condenser. (5.84 and 6.84)
ii. The mechanical efficiency of the compressor. (82\%)
2. A vapour compression cycle uses R 32 . The vapour is at $-20^{\circ} \mathrm{C}$ and dry saturated at entry to the compressor. At exit from the compressor the temperature is $110^{\circ} \mathrm{C}$. The condenser produces saturated liquid at $40^{\circ} \mathrm{C}$. The liquid is throttled, evaporated and returned to the compressor.

Sketch the circuit and show the cycle on a p-h diagram.
Calculate the coefficient of performance of the evaporator and condenser. (3.5 and 4.5) Calculate the isentropic efficiency of the compressor. (74.5\%)

Use the $\mathrm{p}-\mathrm{h}$ chart that can be downloaded here - CLICK HERE small version below.

© D. J Dunn www.freestudy.co.uk

7. Modified Cycles

An improvement to the basic compression cycle is the use of a flash chamber instead of a throttle valve. The condensed high pressure liquid at point 7 is sprayed into the low pressure flash chamber. The drop in pressure has the same effect as throttling and the liquid partially evaporates and drops in temperature. The dry saturated vapour is drawn into the compressor and the saturated liquid is pumped to the evaporator. The principal difference is that the evaporator now operates at a higher pressure and so the liquid at point 2 is below the saturation temperature.

Figure 12
Further modifications may be made by compressing the vapour in two stages and mixing the vapour from the flash chamber at the inter-stage point. The output of the evaporator then goes to the input of the low pressure stage as shown in fig. 13

These modifications require more hardware than the basic cycle so the extra cost must be justified by savings and increased capacity to refrigerate.

WORKED EXAMPLE No. 3

A refrigeration plant uses R12 in the cycle below. The evaporator temperature is $-50{ }^{\circ} \mathrm{C}$ and the condenser pressure is $50^{\circ} \mathrm{C}$. The flash chamber is maintained at $0^{\circ} \mathrm{C}$. Saturated vapour from the chamber is mixed with the compressed vapour at the inter-stage point (3). The liquid in the chamber is further throttled to $-50^{\circ} \mathrm{C}$ in the evaporator. The vapour leaving the evaporator is dry saturated and compression is isentropic. Find the coefficient of performance for the refrigerator assuming $1 \mathrm{~kg} / \mathrm{s}$ flow rate.

Figure 13

SOLUTION

At point (1) the vapour is dry saturated so $\mathrm{h}_{1}=\mathrm{hg}_{\mathrm{g}} @-50{ }^{\circ} \mathrm{C}=164.95 \mathrm{~kJ} / \mathrm{kg}$
Similarly $\quad \mathrm{s}_{1}=\mathrm{sg}_{\mathrm{g}}=0.7401 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
The pressure at point $2 / 3$ must be ps at $0^{\circ} \mathrm{C}=3.08$ bar $\mathrm{s}_{1}=\mathrm{s} 2=0.7401 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} @ 3.08$ bar.

From the tables this is seen to be superheated so the degree of superheat and the enthalpy must be estimated by interpolation as follows.

$$
\begin{aligned}
& \Delta \mathrm{T} / \mathrm{T}=(0.7401-0.7311) /(0.7641-0.7311) \\
& \Delta \mathrm{T}=4.09 \mathrm{~K}
\end{aligned}
$$

Now the enthalpy at point 2 may be estimated as follows.

$$
\begin{aligned}
& 4.09 / 15=(\mathrm{h} 2-197.25) /(.7641-.7311) \\
& \mathrm{h}_{2}=199.9 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Energy balance on Flash Chamber
Assume saturated liquid at point (6). $\mathrm{h} 6=\mathrm{hf} @ 50{ }^{\circ} \mathrm{C}=84.94 \mathrm{~kJ} / \mathrm{kg}$
Since the enthalpy is the same after throttling then $\mathrm{h} 7=84.94 \mathrm{~kJ} / \mathrm{k}$

$$
\mathrm{h} 4=\mathrm{hg} \text { at } 0^{\circ} \mathrm{C}=187.53 \mathrm{~kJ} / \mathrm{kg}
$$

Let the flow rate be $1 \mathrm{~kg} / \mathrm{s}$ at (7) and (y) at point (4). Balancing enthalpy we have

$$
\begin{aligned}
& \mathrm{h} 7=\mathrm{y}(\mathrm{~h} 4)+(1-\mathrm{y}) \mathrm{h} 8 \\
& \mathrm{~h} 8=\mathrm{hf} @ 0{ }^{\circ} \mathrm{C}=36.05 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& \mathrm{y}(187.53)+(1-\mathrm{y})(36.05) \\
& \mathrm{y}=0.3227 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Energy balance at mixing point.
$(1-y) h_{1}+y h 4=h 3$
$((1-0.3227)(199.9)+(0.3227)(187.53)=\mathrm{h} 3=195.9 \mathrm{~kJ} / \mathrm{kg}$

Power of LP Turbine
$P_{1}=(1-y) \mathrm{kg} / \mathrm{s}(\mathrm{h} 2-\mathrm{h} 3)=(1-0.3227)(199.9-164.95)=23.67 \mathrm{~kW}$
The vapour at point 3 is clearly superheated between 0 and 15 K . Interpolation gives the degree of superheat as follows.

$$
\begin{aligned}
& \Delta \mathrm{T} / 15=(195.908-187.53) /(197.25-187.53) \\
& \Delta \mathrm{T}=12.93 \mathrm{~K}
\end{aligned}
$$

We may now interpolate to find s3

$$
\begin{aligned}
& 12.93 / 15=(\mathrm{s} 3-0.6966) /(0.7311-0.6966) \\
& \mathrm{s} 3=0.7263 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}=\mathrm{s} 5 @ 12.19 \mathrm{bar}\left(\mathrm{p}_{\mathrm{s}} \text { at } 50{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Again we must interpolate to find the degree of superheat at point 5 which is between 0 and 15 K again.
$\Delta \mathrm{T} / 15=(0.7263-0.7166) /(0.7503-0.7166)$
$\Delta \mathrm{T}=4.33 \mathrm{~K}$
We may now interpolate with this degree of superheat to find h 5 .

$$
\begin{aligned}
& 4.33 / 15=(\mathrm{h} 5-218.64) /(230.33-218.64) \\
& \mathrm{h} 5=222 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

HP Turbine Power
$\mathrm{P}_{2}=1 \mathrm{~kg} / \mathrm{s}(\mathrm{h} 5-\mathrm{h} 3)=(222-195)=26.92 \mathrm{~kW}$
Total Power input $=50.59 \mathrm{~kW}$
Evaporator Heat Input
$\mathrm{h} 9=\mathrm{h} 8=\mathrm{hf}$ at $0^{\circ} \mathrm{C}=36.05 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=0.6773 \mathrm{~kg} / \mathrm{s}(\mathrm{h} 1-\mathrm{h} 9)$
$\Phi(\mathrm{in})=0.6773(164.95-36.05)=87.3 \mathrm{~kW}$
Coefficient of Performance $=87.3 / 26.92=1.73$

SELF ASSESSMENT EXERCISE No. 2

1. A heat pump uses a vapour compression cycle with refrigerant 134a. The compressor is driven by a heat engine with a thermal efficiency of 40%. Heat removed from the engine in the cooling system is recovered. This amounts to 40% of the energy supplied in the fuel.

The heat pump cycle uses an ideal cycle with an evaporator at $0^{\circ} \mathrm{C}$ and a condenser at 10 bar. The vapour is dry saturated at inlet to the compressor. The condenser produces liquid at $35^{\circ} \mathrm{C}$.

Calculate the Coefficient of Performance for the heat pump and refrigeration effect. (6.52 and 5.52)

Compare it with a boiler running at 90% thermal efficiency.
(300% compared to 90%)
The plant is to deliver 40 kW of heat. Determine the mass flow rate of refrigerant.
($0.197 \mathrm{~kg} / \mathrm{s}$)
2. A refrigerator operates with ammonia. The plant circuit is shown below. The conditions at the relevant points of the cycle are as follows.

1 saturated liquid at $-30^{\circ} \mathrm{C}$
3,4 and 7 saturated liquid at $10^{\circ} \mathrm{C}$
5 saturated vapour at $-30{ }^{\circ} \mathrm{C}$
The pump and compressor have an isentropic efficiency of 80%. There are no heat losses. The specific volume of ammonia liquid is $0.0015 \mathrm{~m} 3 / \mathrm{kg}$.

Determine the coefficient of performance and the mass flow rate if the refrigeration effect is 10 kW .
(Ans. 3.964 and $0.0635 \mathrm{~kg} / \mathrm{s}$)

Figure 14
3. A heat pump consists of a compressor, condenser, throttle, and evaporator. The refrigerant is R12. The refrigerant is at $0^{\circ} \mathrm{C}$ at entry to the compressor and $80^{\circ} \mathrm{C}$ at exit. The condenser produces saturated liquid at $50{ }^{\circ} \mathrm{C}$. The throttle produces wet vapour at $10^{\circ} \mathrm{C}$. The mass flow rate is $0.02 \mathrm{~kg} / \mathrm{s}$. The indicated power to the compressor is 1 kW .

Sketch the T-s diagram and p-h diagram for the cycle.
Calculate the coefficient of performance for the heat pump
(2.9 based on I.P.)

Calculate the rate of heat loss from the compressor.
(0.2 kW)
Calculate the coefficient of performance again for when the refrigerant is sub cooled to $45^{\circ} \mathrm{C}$ at exit from the condenser.
(3 based on I.P.)
Calculate the temperature at exit from the compressor if the compression is reversible and adiabatic.
($68.7^{\circ} \mathrm{C}$)

8. Reciprocating Compressors

This is covered in detail in another tutorial. The knowledge of compressors is often required in refrigeration and heat pump studies so the basics are covered here along with example questions on compressors used in this area. The diagram shows the basic design of a reciprocating compressor. The piston reciprocates drawing in gas, compressing it and expelling it when the pressure inside the cylinder reaches the same level as the pressure in the delivery pipe.

Figure 15
If the piston expels all the air and there is no restriction at the valves, the pressure - volume cycle is as shown below.

Figure 16
Gas is induced from 4 to 1 at the inlet pressure. It is then trapped inside the cylinder and compressed according the law $\mathrm{pVn}=\mathrm{C}$. At point 2 the pressure reaches the same level as that in the delivery pipe and the outlet valve pops open. Air is then expelled at the delivery pressure. The delivery pressure might rise very slightly during expulsion if the gas is being compacted into a fixed storage volume. This is how pressure builds up from switch on.

In reality, the piston cannot expel all the gas and a clearance volume is needed between the piston and the cylinder head. This means that a small volume of compressed gas is trapped in the cylinder at point 3 . When the piston moves away from the cylinder head, the compressed gas expands by the law $\mathrm{pVn}=\mathrm{C}$ until the pressure falls to the level of the inlet pressure. At point 4 the inlet valve opens and gas is drawn in. The volume drawn in from 4 to 1 is smaller than the swept volume because of this expansion.

Figure 17
The volumetric efficiency is defined as

$$
\eta_{\mathrm{vol}}=\frac{\text { Induced Volume }}{\text { Swept Volume }}
$$

This efficiency is made worse if leaks occur past the valves or piston.
In real compressors, the gas is restricted by the valves and the valves tend to move so the real cycle looks more like this.

Figure 18

WORKED EXAMPLE No. 4

Dry saturated Refrigerant 12 vapour at $5^{\circ} \mathrm{C}$ is compressed in a reciprocating compressor to 12.19 bar at a rate of $0.274 \mathrm{~kg} / \mathrm{s}$. The clearance volume is 5% of the swept volume. The expansion part of the cycle follows the law $\mathrm{pV} 1.2=\mathrm{C}$. The crank speed is 360 $\mathrm{rev} / \mathrm{min}$. Calculate the swept volume and the volumetric efficiency.

SOLUTION

Swept Volume $=$ V Clearance volume $=0.05 \mathrm{~V}$
Consider the expansion from 3 to 4 on the $\mathrm{p}-\mathrm{V}$ diagram.
The inlet pressure must be p_{s} at $5^{\circ} \mathrm{C}$ hence $\mathrm{p} 4=3.626$ bar.
$\mathrm{p}_{3} \mathrm{~V}_{3} 1.2=\mathrm{p}_{4} \mathrm{~V}_{4} 1.2$
$12.196(0.05 \mathrm{~V}) 1.2=3.626\left(\mathrm{~V}_{4} 1.2\right)$
$\mathrm{V}_{4}=0.137 \mathrm{~V}$ or 13.7% of V
$\mathrm{V}_{1}=\mathrm{V}+0.05 \mathrm{~V}=1.05 \mathrm{~V}$
Induced volume $=\mathrm{V}_{1}-\mathrm{V}_{4}=1.05 \mathrm{~V}-0.137 \mathrm{~V}=0.913 \mathrm{~V}$
$\dot{\mathrm{m}}_{\mathrm{r}}=0.274 \mathrm{~kg} / \mathrm{s}$
At inlet $\mathrm{v}=\mathrm{vg}$ at $5^{\circ} \mathrm{C}=0.0475 \mathrm{~m} 3 / \mathrm{kg}$.
Volume flow rate required $=0.274 \times 0.0475=0.013 \mathrm{~m} 3 / \mathrm{s}$.
Induced volume $=0.013=0.913 \mathrm{~V}$
$\mathrm{V}=0.013 / 0.913=0.0142 \mathrm{~m}^{3} / \mathrm{s}$
Crank speed $=6 \mathrm{rev} / \mathrm{s}$ so the swept volume $=0.0142 / 6=0.00237 \mathrm{~m}^{3}$.
η vol $=$ Induced Volume/Swept volume.
$\eta_{\mathrm{vol}}=0.913 \mathrm{~V} / \mathrm{V}=91.3 \%$

SELF ASSESSMENT EXERCISE No. 3

1 (a) Why is it preferable that vapour entering a compressor superheated?
(b) A refrigeration cycle uses R 134 a . The evaporator pressure is 2.006 bar and the condenser pressure is 10.163 bar. There is 5 K of superheat at inlet to the compressor. The compressor has an isentropic efficiency of 90%. The condensed liquid is undercooled by 5 K and is throttled back to the evaporator.

The compressor is a reciprocating type with double action. The bore is 250 mm and the stroke is 300 mm . The speed is $200 \mathrm{rev} / \mathrm{min}$. The volumetric efficiency is 85%. You may treat superheated vapour as a perfect gas.

Sketch the cycle on a T- s and p - h diagram and determine
i. the mass flow rate $(0.766 \mathrm{~kg} / \mathrm{s})$
ii. the coefficient of performance. (3.8)
iii. the refrigeration effect. (147.8 kW)
(Note that double acting means it pumps twice for each revolution. The molecular mass for R134a is given in the tables as $102.03 \mathrm{~kg} / \mathrm{kmol}$.)

You may solve using tables or computer software to find values.

9. Ammonia Absorption Cycle

The basic principle of the ammonia absorption cycle is similar to that of the vapour compression cycle. An evaporator is used to absorb heat at a low temperature and a condenser is used to reject the heat at a higher temperature. The difference is in the way the ammonia is passed from the evaporator to the condenser. In a compression cycle this is done with a compressor. In the absorption cycle it is done by absorbing the ammonia into water at the lower temperature. The water and ammonia is then pumped to a heater raising the pressure and temperature. The heater also separates the ammonia from the water and the ammonia vapour is driven off is at a higher pressure and temperature than it started at. The vapour is then condensed and throttled back to the evaporator.

Figure 19
The advantage of this system is that a water pump replaces the vapour compressor.
he pump may be done away with altogether by making use of the principle of partial pressures. When hydrogen is mixed with ammonia vapour, the total pressure of the mixture ' p ' is the sum of the partial pressures such that

$$
\mathrm{p}=\mathrm{p}(\text { ammonia })+\mathrm{p}(\text { hydrogen })
$$

The mixing is done in the evaporator but the total pressure stays the same. The ammonia vapour hence experiences a drop in pressure when mixing occurs and the effect is the same as throttling so a throttle valve is not needed either. Mixing causes the vapour to cool and condense so that a cold wet vapour results.

Evaporation dries it out and a mixture of ammonia and hydrogen gases leaves the evaporator. The mixture goes to the absorber where the ammonia is absorbed into the water leaving the hydrogen behind. The hydrogen goes back to the evaporator in a continuous cycle. When the ammonia and hydrogen separate out in the absorber, they both experiences a pressure rise back to p which is also the water pressure.

Figure 20
Since no pressure difference exists between the evaporator and condenser, circulation may be caused by a thermo-siphon which is induced by heating the water and ammonia. The p-h cycle is similar to that of a vapour compression cycle. Process 3 to 4 is due to the mixing in the evaporator. Process 1 to 2 is due to the absorption.

Figure 21
Heat which is put into the separator in order to make the ammonia leave the water is carried with the water back to the absorber. This heat can be used to operate the thermo-siphon by use of a heat exchanger. A schematic of a complete plant is shown below. The heat required to operate the system may be obtained from anywhere and is commonly a gas flame (Electrolux refrigeration system). This system is popular in caravan refrigerators.

Figure 22

