CONTROL SYSTEMS ENGINEERING D227

SOLUTIONS Q 2003

(a) Sketch the root locus of a unity feed back control system with the open loop transfer function $\mathrm{G}(\mathrm{ol})=\frac{\mathrm{k}}{\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)}$ For what value of k is the system stable?
(b) If a zero at $\mathrm{s}=-2$ is introduced into the function of part (a), obtain the modified root locus. Describe the effect that the introduction of the zero has upon the performance.

SOLUTION (a)

(a) $\mathrm{G}(\mathrm{ol})=\frac{\mathrm{k}}{\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)} \quad \mathrm{G}(\mathrm{cl})=\frac{\mathrm{G}(\mathrm{ol})}{\mathrm{G}(\mathrm{ol})+1}$

The characteristic equation is $\frac{\mathrm{k}}{\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)}+1$
There are three poles at $0,-3$ and -8
For three poles the asymptotes form an angle of 60° and -60° to the real axis.
The intercept with the real axis is at $(0-3-8) / 3=3.67$
The value of k at the point where the locus cuts the imaginary axis is found from the Routh Hurwitz criteria. The characteristic equation may be written as:-
$\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)+\mathrm{k}=0$
multiply out and $\mathrm{s}^{3}+11 \mathrm{~s}^{2}+24 \mathrm{~s}^{1}+\mathrm{ks}^{0}$
The highest power is 3 so use the simplified test.

$$
\mathrm{a}=1 \quad \mathrm{~b}=11 \quad \mathrm{c}=24 \mathrm{~d}=\mathrm{k}
$$

$\mathrm{R}=\mathrm{c}-\mathrm{ad} / \mathrm{b}=24-\mathrm{k} / 11$ and this is zero when the locus cuts the imaginary axis.
$24=k / 11 \quad k=264 \quad$ Any value of k larger than this produces instability.

The asymptotes may now be drawn. One locus starts at $-8(\mathrm{k}=0)$ and moves to $-\infty$ along the real axis.

The other loci start at 0 and -3 and meet at some point before breaking away at 90° as mirror images and eventually forming asymptotes. It would be better if we knew the break away point.

We are finding the roots of $s^{3}+11 s^{2}+24 s^{1}+\mathrm{ks}^{\circ}$. If a calculator that solves roots is available then the roots can be solved for various values of k and a precise plot obtained as shown.
(b) With a zero at -2 the intercept of the asymptotes is $\{(0-3-8)-(-2)\} / 2=4.5$ One loci starts at 0 and ends at -2

The other loci start at -8 and ends at $-4.5+\mathrm{j} \infty$ one and the other starts at -3 and ends at $-4.5-\mathrm{j} \infty$ The angle of the asymptotes is 90° to the real axis The system is stable for all values of k and less oscillatory as the gain is increased.

