ENGINEERING SCIENCE C103
 EXAM SOLUTIONS 2005

Q 6 Air with pressure 2 MPa and density $10 \mathrm{~kg} / \mathrm{m}^{3}$ enters a turbine at a mass flow rate of $0.2 \mathrm{~kg} / \mathrm{s}$ and a velocity of $300 \mathrm{~m} / \mathrm{s}$. The same mass flow rate leaves turbine at a velocity of $200 \mathrm{~m} / \mathrm{s}$ with a pressure o. 1 MPa and temperature of 400 K . If heat is lost from the turbine casing at a rate of 5 kW determine the mechanical power output. $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\mathrm{c}_{\mathrm{p}}=1004.5 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.

SOLUTION

$\Phi+\mathrm{P}=\Delta \mathrm{H}+\Delta \mathrm{KE}$ ignoring potential energy.
$\Phi=-5 \mathrm{~kW}$
$\Delta \mathrm{KE}=0.2\left(200^{2}-300^{2}\right) / 2=-5000 \mathrm{~W}$ or -5 kW
$\mathrm{T}_{2}=400 \mathrm{~K} \mathrm{~T}_{1}=\mathrm{pV} / \mathrm{mR}=\mathrm{p} / \mathrm{\rho R}=2 \times 10^{6} / 10 \times 287=696.9 \mathrm{~K}$
$\Delta \mathrm{H}=\mathrm{mc}_{\mathrm{p}} \Delta \mathrm{T}=0.2 \times 1004.5 \times(400-696.9)=-59540 \mathrm{~W}$ or -59.6 kW
$P=-5-59.56+5=-59.6 \mathrm{~kW}$
Power output is 59.6 kW

