Q 5 A plate that covers a hole in the side of a tank is held in place by four m10 bolts as shown. The tank is filled to a depth of 1000 mm . Determine the total force acting on the plate and the additional force in each bolt due the water pressure.

SOLUTION

Total force $=\mathrm{R}=\rho \mathrm{g} \mathrm{A} \overline{\mathrm{y}}$
$\mathrm{A}=200 \times 200=40000 \mathrm{~mm}^{2}$
$\mathrm{A}=0.04 \mathrm{~m}^{2}$
$\overline{\mathrm{y}}=(1000-100-100)=800 \mathrm{~mm}$
$R=1000 \times 9.81 \times 0.04 \times 0.8=313.92 \mathrm{~N}$
$\overline{\mathrm{h}}=2 \mathrm{nd}$ mom. of Area/ 1st mom. of Area
$1^{\text {st }}$ moment of Area $=\mathrm{A} \overline{\mathrm{y}}=0.04 \times 0.8=0.032 \mathrm{~m}^{3}$.
$2^{\text {nd }}$ mom of area $=\mathbf{I}_{\text {SS }}=\mathrm{B}\left(\mathrm{D}^{3}-\mathrm{d}^{3}\right) / 3=0.2\left(0.9^{3}-0.7^{3}\right) / 12$
$\mathbf{I}_{\text {SS }}=0.0257 \mathrm{~m}^{4}$.
$\overline{\mathrm{h}}=0.0257 / 0.032=0.804 \mathrm{~m}$
The distance from the bottom edge to the centre of pressure $=1-0.804=0.196 \mathrm{~m}$
Distance from C of P to centre of bottom bolts $\mathrm{X}=0.196-0.08=0.116$

Moment about the bottom centre line
$\mathrm{M}=\mathrm{Rx}=313.92 \times 0.116=36.4 \mathrm{Nm}$.
$\mathrm{M}=36.4=0.24 \mathrm{~F}_{2}$

$\mathrm{F}_{2}=36.4 / 0.24=151.7 \mathrm{~N}$
This is shared by two bolts at the top so $\mathrm{F}=75.9 \mathrm{~N}$
The force in the bottom bolts is $313.92-151.7=162.2 \mathrm{~N}$
Force in each $=162.2 / 2=81.1 \mathrm{~N}$

