ENGINEERING SCIENCE C103
 EXAM SOLUTIONS 2004

Q 5 The properties of gas follow the relationship $\mathrm{pv}=\mathrm{RT}$ where p is the pressure, v the specific volume, T the temperature and R is a constant. This gas undergoes a process between states 1 and 2 such that $\mathrm{pv} \mathrm{v}^{\mathrm{n}}=\mathrm{C}$
(a) Show that the work done by a unit mass in its surroundings is

$$
\frac{\mathrm{p}_{2} \mathrm{v}_{2}-\mathrm{p}_{1} \mathrm{v}_{1}}{\mathrm{n}-1}
$$

(b) Show that the increase in specific internal energy of the gas is $\frac{\mathrm{p}_{2} \mathrm{v}_{2}-\mathrm{p}_{1} \mathrm{v}_{1}}{\gamma-1}$ where γ is the ratio of the specific heats. It may be assumed that the specific heats are constant.

SOLUTION

$\mathrm{W}=-\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{pdV}$ but $\mathrm{p}=\mathrm{CV}^{-\mathrm{n}}$
$W=-C \int_{V_{1}}^{V_{2}} V^{-n} d V=-C \frac{\left[V_{2}^{-n+1}-V_{1}^{-n+1}\right]}{-n+1}$
Since $C=p_{1} V_{1}$ or $p_{2} V_{2} \quad W=\frac{\left[p_{2} V_{2}-p_{1} V_{1}\right]}{n-1}$
For a unit mass V becomes v

Change in internal energy $\Delta U=M c_{v}\left(T_{2}-T_{1}\right)$ or for a unit mass $\Delta u=c_{v}\left(T_{2}-T_{1}\right)$
Substitute $T=p v / R$
$\Delta \mathrm{u}=\frac{\mathrm{c}_{\mathrm{v}}}{\mathrm{R}}\left(\mathrm{p}_{2} \mathrm{v}_{2}-\mathrm{p}_{1} \mathrm{v}_{1}\right)$
$c_{p}-c_{v}=R \quad c_{p}=R+c_{v} \quad \frac{c_{p}}{c_{v}}=\gamma$
$\mathrm{c}_{\mathrm{v}}=\frac{\mathrm{c}_{\mathrm{p}}}{\gamma}=\frac{\mathrm{R}+\mathrm{c}_{\mathrm{v}}}{\gamma} \quad \mathrm{c}_{\mathrm{v}} \gamma=\mathrm{R}+\mathrm{c}_{\mathrm{v}}$
$\mathrm{c}_{\mathrm{v}} \gamma-\mathrm{c}_{\mathrm{v}}=\mathrm{R}$
$\mathrm{c}_{\mathrm{v}}(\gamma-1)=\mathrm{R}$
$\frac{\mathrm{cv}}{\mathrm{R}}=\frac{1}{\gamma-1}$
$\Delta u=\frac{\mathrm{p}_{2} \mathrm{v}_{2}-\mathrm{p}_{1} \mathrm{v}_{1}}{\gamma-1}$

