ENGINEERING SCIENCE C103
 EXAM SOLUTIONS 2004

Q 4 The uniform block of mass M is released from the position shown. If no slip occurs between the block and the support at point O , show that the angular acceleration of the block is given by $\alpha=\frac{6 \mathrm{~g}(2 \mathrm{x} \cos \theta+\mathrm{t} \sin \theta)}{\mathrm{L}^{2}+12 \mathrm{x}^{2}+4 \mathrm{t}^{2}}$ where θ is the angle between the block upper surface and the horizontal. The moment of inertia about the centre of gravity is $I_{G}=\frac{M\left(L^{2}+t^{2}\right)}{12}$

SOLUTION

The construction shows that the distance from O to the vertical through G is $x \cos \theta+(t / 2) \sin \theta$

The torque acting on the body is $\mathrm{T}=\mathrm{Mg}\{\mathrm{x} \cos \theta+(\mathrm{t} / 2) \sin \theta\}=(\mathrm{Mg} / 2)\{2 \mathrm{x} \cos \theta+\mathrm{t} \sin \theta\}$
From Newton's second Law T = I α
$I_{G}=\frac{M\left(L^{2}+t^{2}\right)}{12}$ We need I_{O} and to get this we use the parallel axis theorem.
$\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{G}}+\mathrm{My}^{2}$ where y is the distance between the parallel axis. This is obtained from Pythagoras.
$y=\sqrt{\left(\frac{t}{2}\right)^{2}+x^{2}}$ hence $I_{O}=\frac{M\left(L^{2}+t^{2}\right)}{12}+M\left(\left(\frac{t}{2}\right)^{2}+x^{2}\right)$
$I_{O}=M\left[\frac{\left(\mathrm{~L}^{2}+\mathrm{t}^{2}\right)}{12}+\frac{\mathrm{t}^{2}}{4}+\mathrm{x}^{2}\right]$
$\alpha=\frac{\operatorname{Mg}\{2 \mathrm{x} \cos \theta+\operatorname{tsin} \theta\}}{2 M\left[\frac{\left(\mathrm{~L}^{2}+\mathrm{t}^{2}\right)}{12}+\frac{\mathrm{t}^{2}}{4}+\mathrm{x}^{2}\right]}=\frac{\mathrm{g}\{2 \mathrm{x} \cos \theta+\mathrm{t} \sin \theta\}}{\left[\frac{\left(\mathrm{L}^{2}+\mathrm{t}^{2}\right)}{6}+\frac{\mathrm{t}^{2}}{2}+2 \mathrm{x}^{2}\right]}=\frac{6 \mathrm{~g}\{2 \mathrm{x} \cos \theta+\mathrm{t} \sin \theta\}}{\left.\mathrm{L}^{2}+\mathrm{t}^{2}+3 \mathrm{t}^{2}+12 \mathrm{x}^{2}\right]}$
$\alpha=\frac{6 \mathrm{~g}\{2 \mathrm{x} \cos \theta+\operatorname{tsin} \theta\}}{\left[\mathrm{L}^{2}+4 \mathrm{t}^{2}+12 \mathrm{x}^{2}\right]}$

