ENGINEERING SCIENCE C103 EXAM SOLUTIONS 2004

Q 3 Each pulleys has a radius r and moment of inertia I. The mass of each of the suspended components is M and in the case of the centre one, this includes the mass of the pulley. If the centre one is released show that the initial downward acceleration is

$(1-2\sin\theta)Mg$			
M + 2	$2\left(M+\right)$	$\left(\frac{I}{r^2}\right)$	sin ² α

Determine the angle θ when the system is in static equilibrium. Assume that the system is symmetrical at all times and that the centre mass only moves in a vertical direction. The radius r is small compared to the distances between the pulleys. Friction should be ignored.

SOLUTION

Consider the free body diagram for one of the side masses. $F_1 = M(g + a_1)$ Consider the pulley. Torque = $(F_2 - F_1)r = I\alpha$ $\alpha = a_1/r$ $F_2 = (Ia_1/r^2) + F_1 = (Ia_1/r^2) + M(g + a_1)$

Now consider the middle mass and pulley. $2F_2\sin\theta = M(g-a_2)$

$$2\left[\frac{Ia_1}{r^2} + Ma_1 + Mg\right]\sin\theta = Mg - Ma_2$$
$$\left[\frac{Ia_1}{r^2} + Ma_1 + Mg\right]\sin\theta = \frac{Mg}{2} - \frac{Ma_2}{2}$$
$$a_1\left[\frac{I}{r^2} + M\right]\sin\theta = \frac{Mg}{2} - \frac{Ma_2}{2} - Mg\sin\theta$$
$$2a_1\left[\frac{I}{r^2} + M\right]\sin\theta = Mg(1 - 2\sin\theta) - Ma_2$$

The ropes on each side are accelerating in their line of action at a_1 It follows that $a_1 = a_2 \sin \theta$

(so if
$$\theta = 90^{\circ} a_1 = a_2$$
 and if $\theta = 0$ then $a_2 = \infty$)

$$2a_2 \left[\frac{I}{r^2} + M \right] \sin^2 \theta = Mg(1 - 2\sin\theta) - Ma_2$$

$$Ma_2 + 2a_2 \left[\frac{I}{r^2} + M \right] \sin^2 \theta = Mg(1 - 2\sin\theta) \quad a_2 \left\{ M + 2 \left[\frac{I}{r^2} + M \right] \sin^2 \theta \right\} = Mg(1 - 2\sin\theta)$$

$$a_2 = \frac{Mg(1 - 2\sin\theta)}{\left\{ M + 2 \left[\frac{I}{r^2} + M \right] \sin^2 \theta \right\}}$$

For static equilibrium $a_2 = 0$ hence $\sin \theta = \frac{1}{2}$ $\theta = 30^{\circ}$

