OUTCOME 2

TUTORIAL 5 – OTHER FLUID POWER VALVES

The material needed for outcome 2 is very extensive so there are ten tutorials in this outcome. You will also be completing the requirements for outcome 1 which is integrated into it. The series of tutorials provides an extensive overview of fluid power for students at all levels seeking a good knowledge of fluid power equipment.

2 Understand the construction, function and operation of pneumatic and hydraulic components, equipment and plant

Pneumatic equipment: types, construction, function and operation e.g. air compressors, coolers, dryers, receivers, distribution equipment, fluid plumbing and fittings, drain traps, FRL air service units, valves, actuators, seals

Hydraulic equipment: types, construction, function and operation e.g. fluids, pumps, motors, actuators, reservoirs, accumulators, fluid plumbing and fittings, valves, filters, seals, gauges

Performance characteristics: air compressors e.g. volumetric efficiency, compression ratio, isothermal efficiency; hydraulic pumps e.g. operating efficiency, losses, flow rate, operating pressure, shaft speed, torque and power

Directional control valves are covered in a separate tutorial. On completion of this tutorial you should be able to do the following.

- Explain the principles and symbols of pressure relief valves.
- Explain the principles and symbols of pressure reducing valves and pressure regulators.
- Explain the principles and symbols of non return valves.
- Explain the principles and symbols of restrictor valves.
- Explain the purpose of pneumatic logic valves.
- Explain the purpose of pneumatic time delay valves.
- Explain the purpose of pneumatic counters.
FLUID POWER VALVES

1. **INTRODUCTION**

Directional control valves were described in the previous tutorial. There are many other valves used in fluid power to control the pressure and flow of the fluid. This tutorial is about them.

2. **NON RETURN VALVE**

These allow the fluid to flow only in one direction. They are typically used to stop the reverse flow of fluid through a pump when it is switched off and to lock an actuator in position by preventing the fluid leaving it.

![Symbol](image1)

Figure 1

3. **VARIABLE RESTRICTOR VALVES**

These restrict the flow of the fluid producing a drop in pressure. They are often used to control the speed of cylinders and motors. Often they have a one way valve in parallel with it so that restriction only occurs in one direction. The diagram below shows a one way restrictor with restricted flow from A to B.

![Diagram](image2)

Figure 2

The pneumatic version is much simpler as it works at lower pressures. Flow control is produced by the needle shape of the poppet. The reverse flow is allowed by the flexible washer under the poppet lifting up.

![Diagram](image3)

Figure 3
4. PRESSURE RELIEF VALVE

The purpose of a pressure relief valve is to protect a system from too much pressure. This will occur if the actuator is overloaded or if the flow of fluid is blocked. For example when a cylinder reaches the end of its stroke, the pump will still try to pump oil into it but it has nowhere to go. Similarly if a closed centre valve is used, the pump becomes blocked off. In such cases the pump or the system will become damaged.

![Figure 4](image)

The relief valve is normally kept closed by the spring. Port (A) is connected to the system to be protected. If the pressure acting on the poppet overcomes the force of the spring, the poppet opens and lets the oil through to the tank (port B) thus limiting the pressure. Usually the spring is adjusted in order to set the pressure. The symbol is shown below.

In order to cope with large flow rates efficiently, a two stage valve is used. The diagram shows a 2-stage valve. The first stage contains the spring loaded poppet which lifts and passes oil from port A (pressure) to port B (Tank). The pressure is set by adjusting the spring force. The flow of oil is through a restrictor and this produces a pressure difference between the bottom and top of the second stage piston. The piston rises as a result and port A is opened directly to port B. The pilot port is normally closed but if it is opened, the second stage is opened fully without the operation of the first stage. This is often used in connection with an emergency stop valve to quickly depressurise a system. The drainage port copes with any fluid leaking past the adjuster. The valve is designed to fit on a standard base.

![Figure 5](image)
Figure 7

SINGLE STAGE

DOUBLE STAGE

A - PRESSURE
B - TANK
X - PILOT
L - DRAIN
5. **PRESSURE REDUCING VALVES**

These are used to provide a constant pressure to part of a system that is lower than the pressure in the rest of the system. The design is very similar to the two stage pressure relief valve but the motion of the piston is controlled by the outlet pressure, not the system pressure. The high pressure oil leaks through the restrictor and lifts the poppet. The pressure is set by adjusting the spring behind the poppet. The oil passing through is wasted to drain. The pressure drop through the restrictor produces a force imbalance on the spool and it moves to partially block port B and so reduce the pressure at port B. If the pressure on port B rises, the leakage through the restrictor increases and the pressure drop increases so the spool moves further close port B. If the pressure on port B drops, the leakage drops and the pressure difference drops so the spool moves to open port B and let more oil through.

![Diagram of pressure reducing valve](image)

Figure 8

Pneumatic systems are low pressure systems and are supplied with air at a typical pressure of 8 bar and this is reduced to supply the system typically at 3 bar. The air is supplied to the system through a regulator which is a form of reducing valve. The pressure is reduced through the poppet valve (2). The valve is set by the spring and adjuster 4. Variations in the outlet pressure make the diaphragm (3) move up or down to open and close the valve as required to keep the pressure constant.

![Diagram of pneumatic system](image)

Figure 9
6. **CARTRIDGE VALVES**

A fuller description of cartridge valves is given in the tutorial on directional control valves. These are forms of poppet valve designed to fit into a block. Just about all valve types can be designed as a cartridge to fit into a block specially machined to accept it. In this way a bank of valves may be built into one block. The block might contain directional valves, relief valves, flow dividers, one way valves and so on. The diagram below shows a cartridge type pressure relief valve.

![Diagram of cartridge valve](image)

Figure 10

7. **PNEUMATIC LOGIC VALVES**

The two main logic valves are OR valves and AND valves. The OR valve is also called a SHUTTLE VALVE. The air always comes out of port C when air is applied to port A OR port B.

![OR valve symbol](image)

Figure 11

The AND valve only gets air from port C when air is applied to ports A AND B.

![AND valve symbol](image)

Figure 12
A NOT valve reverses a signal so if air is supplied at A, no air comes out of B and if no air is supplied at A, air is obtained from B. If a small circle is placed on the symbol as shown, it inverts the action at that connection. Hence a NOR valve is really an OR valve with an inverting output. The NOR valve supplies no pressure at C when no pressure is supplied to A nor B.

The NAND valve supplies pressure at C when pressure is supplied to A and not B.

![Valve Symbols](image)

Figure 13

8. **QUICK EXHAUST VALVE**

This valve is used to enable the air exhausting from a cylinder to go straight to atmosphere without passing back down the tubes to the directional valve. This enables quicker operation of the cylinder as no back pressure builds up in the return tubes.

The air comes in through the inlet and pushes the flapper back blocking the exhaust and letting air through the holes around the edge and out through the cylinder port.

When air enters from the cylinder port, the rush throws the flapper against the flat surface and blocks the holes in it so preventing air going back to the inlet. This action opens the exhaust port and the air leaves that way.

![Quick Exhaust Valve](image)

Figure 14

9. **TIME DELAY VALVES**

Time delay valves are pilot operated valves in which the pilot air is supplied through a variable restrictor so that it takes time for the operating pressure to build up. The time delay is adjusted by adjusting the variable restrictor.

Time delays are used a lot in industrial equipment. For example, a time delay may be used to give a tool time to clear the piece area before moving the work it.

The symbol is shown below. When a pressure is applied to port 1 a time delay occurs and then pressure is obtained from port 3. A permanent pressure source is connected to port 2.
10. COUNTERS

Counters are used to count a set number of pressure pulses and then switch on an air supply.

The diagram shows one type of pneumatic counter.

The number of counts required is set. The pulses to be counted are connected to port 2. The present count value is also displayed on a mechanical counter. When the two values are the same pressure is obtained from port Z. Port P is connected to a permanent pressure source. The unit may be reset by either applying a pulse to port Y or by pressing the reset button.
SELF ASSESSMENT EXERCISE No.1

1. Identify the component on the pneumatic circuit below represented by symbols V1, V2, V3 and A1.

 Explain the purpose of V3

 Explain the purpose of component V1

 ![Figure 17](image)

2. Identify the purpose of the components on the pneumatic circuit below.
 Identify component V6
 Explain the purpose of the OR valve V9.
 Explain the purpose of valve V7.
 Explain the sequence of events that occur after valve V1 or V2 is operated.

 ![Figure 18](image)
3. Explain the sequence of events that occur when valve V1 is operated.

![Figure 19](image-url)