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FLUID MECHANICS 
 

TUTORIAL  No.8A 
 

WATER TURBINES 
 
 
When you have completed this tutorial you should be able to 
 
 

 
 
• Explain the significance of specific speed to turbine selection. 
 
• Explain the general principles of  

 Pelton Wheels 
 Kaplan Turbines 
 Francis Turbine 
 

• Construct blade vector diagrams for moving vanes for a  Pelton 
Wheels and a Francis Turbine 

 
• Deduce formulae for power and efficiency for turbines. 
 
• Solve numerical problems for a Pelton Wheels and a Francis 

Turbine 
 
  

 
 
 
 
 

 



1.  INTRODUCTION 
 
A water turbine is a device for converting water (fluid) power into shaft (mechanical) power. 
A pump is a device for converting shaft power into water power. 
 
Two basic categories of machines are the rotary type and the reciprocating type. 
Reciprocating motors are quite common in power hydraulics but the rotary principle is 
universally used for large power devices such as on hydroelectric systems. 
 
Large pumps are usually of the rotary type but reciprocating pumps are used for smaller 
applications. 
 
1.1 THE SPECIFIC SPEED FOR VARIOUS TYPES OF TURBINES  
 
The power 'P' of any rotary hydraulic machine (pump or motor) depends upon the density 'ρ' , 
the speed 'N', the characteristic diameter 'D', the head change '∆H', the volume flow rate 'Q' 
and the gravitational constant 'g'. The general equation is: 
   P = f(ρ, N, D, ∆H, Q, g) 
 
It is normal to consider g∆H as one quantity.   P = f{ρ, N, D, (g∆H),Q} 
 
There are 6 quantities and 3 dimensions so there are three dimensionless groups Π1, Π2and 
Π3. First form a group with P and ρND. 
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Next repeat the process between Q and ρND 
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Next repeat the process between g∆H and ρND 
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Finally the complete equation is   ⎟
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SPECIFIC SPEED Ns 
 
The specific speed is a parameter used for pumps and turbines to determine the best design to 
match a given pumped system. The formula may be derived from consideration of the pump 
geometry or by dimensional analysis. The latter will be used here. 
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The three dimensionless numbers represent the Power coefficient, the flow coefficient and the  
Head coefficient respectively. Now consider a family of geometrically similar machines 
operating at dynamically similar conditions. For this to be the case the coefficients must have 
the same values for each size. Let the 3 coefficients be Π1, Π2 and Π3 such that  
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Ns is a dimensionless parameter that and the units used are normally rev/min for speed, m3/s 
for flow rate and metres for head. Other units are often used and care should be taken when 
quoting Ns values. 
 
It follows that for a given speed, the specific speed is large for large flows and low heads and 
small for small flows and large heads. The important value is the one that corresponds to the 
conditions that produce the greatest efficiency. The diagram illustrates how the design affects 
the specific speed. 

 
Figure 1 
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2. GENERAL PRINCIPLES OF TURBINES. 
 
WATER POWER 
 
This is the fluid power supplied to the machine in the form of pressure and volume. 
 
Expressed in terms of pressure head the formula is    W.P. = mg∆H 
 
M is the mass flow rate in kg/s and ∆H is the pressure head difference over the turbine in 
metres. Remember that ∆p = ρg∆H 
 
Expressed in terms of pressure the formula is   W.P. = Q∆p 
 
Q is the volume flow rate in m3/s. ∆p is the pressure drop over the turbine in N/m2 or Pascals. 
 
SHAFT POWER 
 
This is the mechanical, power output of the turbine shaft. The well known formula is 

S.P. = 2πNT 
Where T is the torque in Nm and N is the speed of rotation in rev/s 
 
DIAGRAM POWER 
 
This is the power produced by the force of the water acting on the rotor. It is reduced by 
losses before appearing as shaft power. The formula for D.P. depends upon the design of the 
turbine and involves analysis of the velocity vector diagrams. 
 
HYDRAULIC EFFICIENCY 
 
This is the efficiency with which water power is converted into diagram power and is given 
by    
     ηhyd= D.P./W.P. 
MECHANICAL EFFICIENCY 
 
This is the efficiency with which the diagram power is converted into shaft power. The 
difference is the mechanical power loss. 
     ηmech= S.P./D.P. 
 
OVERALL EFFICIENCY 
 
This is the efficiency relating fluid power input to shaft power output. 
   
     ηo/a= S.P./W.P. 
 
It is worth noting at this point that when we come to examine pumps, all the above 
expressions are inverted because the energy flow is reversed in direction. 
 
The water power is converted into shaft power by the force produced when the vanes deflect 
the direction of the water. There are two basic principles in the process, IMPULSE and 
REACTION. 



IMPULSE occurs when the direction of the fluid is changed with no pressure change. It 
follows that the magnitude of the velocity remains unchanged. 
 
REACTION occurs when the water is accelerated or decelerated over the vanes. A force is 
needed to do this and the reaction to this force acts on the vanes. 
 
Impulsive and reaction forces are determined by examining the 
changes in velocity (magnitude and direction) when the water 
flows over the vane. The following is a typical analysis. 
 
The vane is part of a rotor and rotates about some centre point. 
Depending on the geometrical layout, the inlet and outlet may or 
may not be moving at the same velocity and on the same circle. 
In order to do a general study, consider the case where the inlet 
and outlet rotate on two different diameters and hence have 
different velocities. 

Fig.2 
 

u1 is the velocity of the blade at inlet and u2 is the velocity of the blade at outlet. Both have 
tangential directions.ω1 is the relative velocity at inlet and ω2 is the relative velocity at outlet. 
 
The water on the blade has two velocity components. It is moving tangentially at velocity u 
and over the surface at velocity ω. The absolute velocity of the water is the vector sum of 
these two and is denoted v. At any point on the vane   v = ω + u 
 
At inlet, this rule does not apply unless the direction of v1 is made such that the vector 
addition is true. At any other angle, the velocities will not add up and the result is chaos with 
energy being lost as the water finds its 
way onto the vane surface. The perfect 
entry is called "SHOCKLESS 
ENTRY" and the entry angle β1 must 
be correct. This angle is only correct 
for a given value of v1. 

 
    Fig.3 

 INLET DIAGRAM 
 
For a given or fixed value of u1 and v1, shockless entry will occur only if the vane angle α1 is 
correct or the delivery angle β1 is correct. In order to solve momentum forces on the vane and 
deduce the flow rates, we are interested in two components of v1. These are the components in 
the direction of the vane movement denoted 
vw (meaning velocity of whirl) and the 
direction at right angles to it vR (meaning 
radial velocity but it is not always radial in 
direction depending on the wheel design). 
The suffix (1) indicates the entry point. A 
typical vector triangle is shown. 

 
    Fig.4 
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OUTLET DIAGRAM
 
At outlet, the absolute velocity of the water has to be the vector resultant of u and ω and the 
direction is unconstrained so it must come off the wheel at the angle resulting. Suffix (2) 
refers to the outlet point. A typical vector triangle is shown. 

 
Fig. 5 

DIAGRAM POWER 
 
Diagram power is the theoretical power of the wheel based on momentum changes in the 
fluid. The force on the vane due to the change in velocity of the fluid is F = m∆v and these 
forces are vector quantities. m is the mass flow rate. The force that propels the wheel is the 
force developed in the direction of movement (whirl direction). In order to deduce this force, 
we should only consider the velocity changes in the whirl direction (direction of rotation) 
∆vw. The power of the force is always the product of force and velocity. The velocity of the 
force is the velocity of the vane (u). If this velocity is different at inlet and outlet it can be 
shown that the resulting power is given by 
 

D.P. = m ∆vw = m (u1vw1 – u2 vw2) 
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3.  PELTON WHEEL 
 

 
Fig. 6 Pelton Wheel With Case Removed 

 
Pelton wheels are mainly used with high pressure heads such as in mountain hydroelectric 
schemes. The diagram shows a layout for a Pelton wheel with two nozzles. 

 
Fig.7 Schematic Diagram Of Pelton Wheel With Two Nozzles 
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3.1  GENERAL THEORY 
 
The Pelton Wheel is an impulse turbine. The fluid power is converted into kinetic energy in 
the nozzles. The total pressure drop occurs in the nozzle. The resulting jet of water is directed 
tangentially at buckets on the wheel producing impulsive force on them. The buckets are 
small compared to the wheel and so they have a single velocity  u = πND 
D is the mean diameter of rotation for the buckets. 
 
The theoretical velocity issuing from the nozzle is given by 
      v1= (2gH)1/2 or v1= (2p/ρ)1/2

Allowing for friction in the nozzle this becomes 
    v1= Cv(2gH)1/2 or v1= Cv(2p/ρ)1/2

 
H is the gauge pressure head behind the nozzle, p the gauge pressure and cv the coefficient of 
velocity and this is usually close to unity. 
 
The mass flow rate from the nozzle is 
 
  m = Cc ρAv1 = CcρACv(2gH)1/2 =  Cd ρA(2gH)1/2  
 
Cc is  the coefficient of contraction (normally unity because the nozzles are designed not to 
have a contraction).  
 
Cd is the coefficient of discharge and Cd = CcCv 
 
In order to produce no axial force on the wheel, the flow is divided equally by the shape of the 
bucket. This produces a zero net change in momentum in the axial direction. 

              
Fig.8                  Fig. 9 

Layout of Pelton Wheel with One Nozzle Cross Section Through Bucket 
 

The water is deflected over each half of the bucket by 
an angle of θ degrees. Since the change in momentum 
is the same for both halves of the flow, we need only 
consider the vector diagram for one half. The initial 
velocity is v1 and the bucket velocity u1 is in the same 
direction. The relative velocity of the water at inlet (in 
the middle) is ω1 and is also in the same direction so 
the vector diagram is a straight line. 

     Fig. 10 
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If the water is not slowed down as it passes over the bucket surface, the relative velocity ω2 
will be the same as ω1. In reality  friction slows it 
down slightly and we define a blade friction 
coefficient as  k = ω2/ω1
The exact angle at which the water leaves the sides 
of the bucket depends upon the other velocities but 
as always the vectors must add up so that    v2=  u  + ω2
Note that u2 = u1 = u since the bucket has a uniform 
velocity everywhere. 
The vector diagram at exit is as shown. 
      Fig. 11 
 
It is normal to use ω1 and u as common to 
both diagrams and combine them as shown. 
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Since u2 = u1 = u the diagram power becomes  D.P. = mu∆vw 
 
Examining the combined vector diagram 
shows that ∆vw = ω1- ω2cosθ 
 

    Fig. 12 
 
Hence  D.P.= mu(ω1 - ω2cosθ) but ω2 = kω1 
 
  D.P.= muω1(1 - kcosθ) but ω1 = v1-u 
  
  D.P.= mu(v1-u)( 1- kcosθ) 
 
 
 WORKED EXAMPLE No. 1 
  
 A Pelton wheel is supplied with 1.2 kg/s of water at 20 m/s. The buckets rotate on a mean 

diameter of 250 mm at 800 rev/min. The deflection angle is 165o and friction is 
negligible. Determine the diagram power. Draw the vector diagram to scale and 
determine ∆vw. 

 
 SOLUTION 
  
 u = πND/60 = π x 800 x 0.25/60 = 10.47 m/s 
 
 D.P = mu(v1-u)( 1- kcosθ)  
 
 D.P = 1.2 x 10.47 x (20 - 10.47)(1 - cos 165) = 235 Watts 
 
 You should now draw the vector diagram to scale and show that ∆vw= 18.5 m/s 
 
 



3.2  CONDITION FOR MAXIMUM POWER 
 
If the equation for diagram power is used 
to plot  D.P against u, the graph is as 
shown below. 
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Clearly the power is zero when the buckets 
are stationary and zero when the buckets 
move so fast that the water cannot catch 
up with them and strike them. In between 
is a velocity which gives maximum power. 
This may be found from max and min theory. 
     Fig. 13 
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3.3  SPECIFIC SPEED Ns FOR PELTON WHEELS 
 
You may have already covered the theory for specific speed in dimensional analysis but for 
those who have not, here is a brief review. 
 
Specific speed is a parameter which enables a designer to select the best pump or turbine for a 
given system. It enables the most efficient matching of the machine to the head and flow rate 
available. One definition of specific speed for a turbine is : Ns = NQ1/2(H) -3/4

N is the speed in rev/min, Q is the volume flow rate in m3/s and H is the available head in 
metres. The equation may be developed for a Pelton Wheel as follows. 
 
u = πND/60 = K1ND D = mean wheel diameter          N = u/(K1D) 
u = bucket velocity vj = K2H

1/2   H = head behind the nozzle 
vj = nozzle velocity            Now for a fixed speed wheel, u = K3vj   Hence 
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Substituting all in the formula for Ns we get           
D
dkNs =  

The value of k has to be deduced from the data of the wheel and nozzle. Note that Ns is 

sometimes defined in terms of water power as  
( )4

5
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s
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=   

 
This is just an alternative formula and the same result can be easily obtained other ways. You 
will need the substitution   P = ρQgH 
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 SELF ASSESSMENT EXERCISE No. 1 
 
1. The buckets of a Pelton wheel revolve on a mean diameter of 1.5 m at 1500 rev/min. The 

jet velocity is 1.8 times the bucket velocity. Calculate the water flow rate required to 
produce a power output of 2MW. The mechanical efficiency is 80% and the blade friction 
coefficient is 0.97. The deflection angle is 165o.  

 (Ans. 116.3 kg/s) 
 
 
2. Calculate the diagram power for a Pelton Wheel 2m mean diameter revolving at 3000 

rev/min with a deflection angle of 170o under the action of two nozzles , each supplying 
10 kg/s of water with a velocity twice the bucket velocity. The blade friction coefficient 
is 0.98. 

 (Ans. 3.88 MW) 
 
 If the coefficient of velocity is 0.97, calculate the pressure behind the nozzles. 
 (Ans 209.8 MPa) 
 
 
3. A Pelton Wheel is 1.7 m mean diameter and runs at maximum power. It is supplied from 

two nozzles. The gauge pressure head behind each nozzle is 180 metres of water. Other 
data for the wheel is : 

 
 Coefficient of Discharge Cd = 0.99  
 Coefficient of velocity  Cv = 0.995 
 Deflection angle = 165o.  
 Blade friction coefficient = 0.98 
 Mechanical efficiency = 87% Nozzle diameters = 30 mm 
 
 Calculate the following. 
 
 i.    The jet velocity   (59.13 m/s) 
 ii.   The mass flow rate (41.586 kg/s) 
 iii   The water power ( 73.432 kW) 
 iv.  The diagram power ( 70.759 kW) 
 v.   The diagram efficiency (96.36%) 
 vi.  The overall efficiency (83.8%) 
 vii. The wheel speed in rev/min (332 rev/min) 
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4.  Explain the significance and use of 'specific speed' Ns = NP1/2/{ρ1/2(gH)5/4} 
 Explain why in the case of a Pelton wheel with several nozzles, P is the power per nozzle. 
 Explain why a Francis Wheel is likely to be preferred to a Pelton wheel when site 

conditions suggest that either could be used. 
 Calculate the specific speed of a Pelton Wheel given the following. 
 
 d = nozzle diameter.  
 D = Wheel diameter. 
 u = optimum blade speed = 0.46 v1  
 v1= jet speed. 
 η = 88%  Cv = coefficient of velocity = 0.98 
 
 Answer  Ns = 11.9 d/D 
 
5. Explain the usefulness of specific speed in the selection of pumps and turbines. 
 
 A turbine is to run at 150 rev/min under a head difference of 22 m and an expected flow 

rate of 85 m3/s. 
 
 A scale model is made and tested with a flow rate of 0.1 m3/s and a head difference of 5 

m. Determine the scale and speed of the model in order to obtain valid results. 
 
 When tested at the speed calculated, the power was 4.5 kW. Predict the power and 

efficiency of the full size turbine. 
 
 Answers 0.05 scale 16.17 MW and 88%. 
 



4.  KAPLAN TURBINE 
 
The Kaplan turbine is a pure reaction turbine. 
The main point concerning this is that all the 
flow energy and pressure is expended over the 
rotor and not in the supply nozzles. The picture 
shows the rotor of a large Kaplan turbine. They 
are most suited to low pressure heads and large 
flow rates such as on dams and tidal barrage 
schemes. 
 
The diagram below shows the layout of a large 
hydroelectric generator in a dam. 
 
 
 
 

 

 
 

Fig.14 Picture and schematic of a Kaplan Turbine 
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5.  FRANCIS WHEEL 
 
The Francis wheel is an example of a mixed impulse and reaction turbine. They are adaptable 
to varying heads and flows and may be run in reverse as a pump such as on a pumped storage 
scheme. The diagram shows the layout of a vertical axis Francis wheel. 

 
                                Fig.15 

 
The Francis Wheel is an inward flow device with the water entering 
around the periphery and moving to the centre before exhausting. 
The rotor is contained in a casing that spreads the flow and pressure 
evenly around the periphery. 

 
The impulse part comes about because guide vanes are used to 
produce an initial velocity v1 that is directed at the rotor. 
 
Pressure drop occurs in the guide vanes and the velocity is v1 = k 
(∆H)½  where  ∆H is the head drop in the guide vanes. 

     Fig.16 
The angle of the guide vanes is adjustable so that the inlet angle β1 is correct for shockless 
entry. 
 
The shape of the rotor is such that 
the vanes are taller at the centre than 
at the ends. This gives control over 
the radial velocity component and 
usually this is constant from inlet to 
outlet. The volume flow rate is 
usually expressed in terms of radial 
velocity and circumferential area.          Fig.17 
vR = radial velocity A = circumferential area = πD h  k 
Q = vR πD h  k h = height of the vane. 
k is a factor which allows for the area taken up by the thickness of the vanes on the 
circumference. If vR is constant then since Q is the same at all circumferences, 

   D1h1=D2h2. 
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VECTOR DIAGRAMS 

 
Fig. 18 

The diagram shows how the vector diagrams are constructed for the inlet and outlet. 
Remember the rule is that the vectors add up so that  u + v = ω 
 
If u is drawn horizontal as shown, then Vw is the horizontal component of v and vR is the 
radial component (vertical). 
 
MORE DETAILED EXAMINATION OF VECTOR DIAGRAM 
 
Applying the sine rule to the inlet triangle we find 
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If all the angles are known, then vw1 may be found as a fraction of u1. 
 
DIAGRAM POWER 
 
Because u is different at inlet and outlet we express the diagram power as : 
  D.P. = m ∆(uvw)= m (u1vw1 – u2vw2) 
The kinetic energy represented by v2 is energy lost in the exhausted water. For maximum 
efficiency, this should be reduced to a minimum and this occurs when the water leaves 
radially with no whirl so that vw2 = 0. This is produced by designing the exit angle to suit the 
speed of the wheel. The water would leave down the centre hole with some swirl in it. The 
direction of the swirl depends upon the direction of v2 but if the flow leaves radially, there is 
no swirl and less kinetic energy. Ideally then, 
 
  D.P. = m u1 vw1 
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WATER POWER 
 
The water power supplied to the wheel is mg∆H where ∆H is the head difference between 
inlet and outlet. 
 
HYDRAULIC EFFICIENCY 
The maximum value with no swirl at exit is  ηhyd = D.P./W.P. = u1v w1/gρH 
 
OVERALL EFFICIENCY 
  ηo/a= Shaft Power/Water Power 
          ηo/a = 2πNT/mg∆H 
LOSSES 
The hydraulic losses are the difference between the water power and diagram power. 
Loss = mg∆H - mu1vw1= mghL hL = ∆H – u1vw1/g ∆H - hL = u1vw1/g 
 
 
 WORKED EXAMPLE No. 2 
 
 The following data is for a Francis Wheel. 
 Radial velocity is constant      No whirl at exit. 
 Flow rate  0.189 m3/s 
 D1= 0.6 m  D2=0.4 m     k =0.85 h1=50 mm 
 α1=110o  N=562 rev/min 
 Head difference from inlet to outlet is 32 m.  Entry is shockless. Calculate 
  i. the guide vane angle 
  ii. the diagram power 
  iii. the hydraulic efficiency 
  iv. the outlet vane angle 
  v. the blade height at outlet. 
  
 SOLUTION 
  
 u1= πND1 = 17.655 m/s vr1= Q/(πD1h1k)= 0.189/(π x 0.6 x 0.05 x 0.85) = 2.35 m/s 

 
Fig. 19 

 vw1 and β1 may be found by scaling or by trigonometry. 
  vw1=16.47m/s   β1=8.12o u2= πND2 = 11.77 m/s 
 α2= tan-1 (2.35/11.77) = 11.29o 
 D.P. = m u1vw1=189 (17.655 x 16.47) = 54 957 Watts 
 W.P.= mg∆H = 189 x 9.81 x 32 = 59 331 Watts 
 ηhyd = 54 957/59 331 = 92.6% 
 since vr1 = vr2 then D1h1 = D2 h2 
 h2 = 0.6 x 0.05/0.4 = 0.075 m 
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WORKED EXAMPLE No. 3 
 
The runner (rotor) of a Francis turbine has a blade configuration as shown. The outer diameter 
is 0.4 m and the inner diameter is 0.25 m. The vanes are 65 mm high at inlet and 100 mm at 
outlet. The supply head is 20 m and the losses in the guide vanes and runner are equivalent to 
0.4 m. The water exhausts from the middle at atmospheric pressure. Entry is shockless and 
there is no whirl at exit. Neglecting the blade thickness, determine : 
 
i. the speed of rotation. 
ii. the flow rate. 
iii. the output power given a mecanical efficiency of 88%. 
iv. the overall efficiency. 
v. The outlet vane angle. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.20 
 
SOLUTION 
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The inlet vector diagram is as shown. Values can be found by drawing to scale. 
Since all angles are known but no flow rate, find vw1 in terms of u1

∆H - hL = u1vw1/g 
20 - 0.4 = 19.6 = u1vw1/g 
19.6 = 0.826 u1

2/g 
u1 =15.26 m/s 
u1 = πND1/60  
N = 15.26 x 60/(πx0.4) = 728.5 rev/min 

( ) ( )
( )

( ) ( )
( ) m/s589.4
100sin

20sin120sin26.15
sin

sinsin

111

111
1 ==

−
=

βα
βαuvr  

 



 
 
Q = vr1 x πD1h1 = 12.6 x π x 0.4 x 0.065 = 0.375 m3/s 
m = 375 kg/s 
 
vw1 = 0.826 u1 = 12.6 m/s 
 
Diagram Power = m u1 vw1 = 375 x 15.26 x 12.6 = 72.1 kW 
 
Output power = 0.88 x 72.1 = 63.45 kW 
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OUTLET TRIANGLE 
u2 = πND2/60 = π x 728.5 x 0.25/60 = 9.54m/s 
Q = vr2 x πD2h2

0.375 = vr2 x π x 0.25 x 0.1 
vr2 = 4.775 m/s = v2 if no whirl. 
tan α2 = 4.775/9.54 = 0.5 
α2 =26.6o.                           Fig. 22 
 
 
 
 SELF ASSESSMENT EXERCISE No. 2 
 
1. The following data is for a Francis Wheel 
 Radial velocity is constant 
 No whirl at exit. 
 Flow rate=0.4 m3/s 
 D1=0.4 m 
 D2=0.15 m 
 k =0.95 
 α1=90o 
 N=1000 rev/min 
 Head at inlet = 56 m 
 head at entry to rotor = 26 m 
 head at exit = 0 m 
 Entry is shockless. 
 
Calculate i. the inlet velocity v1    (24.26 m/s) 
  ii. the guide vane angle (30.3o) 
  iii. the vane height at inlet and outlet (27.3 mm, 72.9 mm) 
  iv. the diagram power (175.4 MW) 
  v. the hydraulic efficiency (80%) 
 
2.  A radial flow turbine has a rotor 400 mm diameter and runs at 600 rev/min. The vanes are 

30 mm high at the outer edge. The vanes are inclined at 42o to the tangent to the inner 
edge. The flow rate is 0.5 m3/s and leaves the rotor radially. Determine 

 
 i.   the inlet velocity as it leaves the guide vanes. (19.81 m/s) 
 ii.  the inlet vane angle. (80.8o) 
 iii. the power developed. (92.5 kW) 
 



 
3.  The runner (rotor) of a Francis turbine has a blade configuration as shown. The outer 

diameter is 0.45 m and the inner diameter is 0.3 m. The vanes are 62.5 mm high at inlet 
and 100 mm at outlet. The supply head is 18 m and the losses in the guide vanes and 
runner are equivalent to 0.36 m. The water exhausts from the middle at atmospheric 
pressure. Entry is shockless and there is no whirl at exit. Neglecting the blade thickness, 
determine : 

 
i. The speed of rotation. (1691 rev/min) 
ii. The flow rate. (1.056 m3/s) 
iii. The output power given a mechanical efficiency of 90%. (182.2 MW) 
iv. The overall efficiency. (88.2%) 
v. The outlet vane angle. (22.97o) 
 

 
Fig. 23 
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