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FLUID MECHANICS 

TUTORIAL No. 3 
 

BOUNDARY LAYER THEORY 
 
In order to complete this tutorial you should already have completed tutorial 1 and 2 in this 
series. This tutorial examines boundary layer theory in some depth.  
 
 
 
When you have completed this tutorial, you should be able to do the following. 
 

  
 Discuss the drag on bluff objects including long cylinders and spheres. 

 
 Explain skin drag and form drag. 

 
 Discuss the formation of wakes. 

 
 Explain the concept of momentum thickness and displacement thickness. 

 
 Solve problems involving laminar and turbulent boundary layers. 

 
 
 
 
 
 

 
 
 
Throughout there are worked examples, assignments and typical exam questions. You should 
complete each assignment in order so that you progress from one level of knowledge to 
another. 
 
Let us start by examining how drag is created on objects. 
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1. DRAG 
 
When a fluid flows around the outside of a body, it produces a force that tends to drag the 
body in the direction of the flow. The drag acting on a moving object such as a ship or an 
aeroplane must be overcome by the propulsion system. Drag takes two forms, skin friction 
drag and form drag. 
 
1.1 SKIN FRICTION DRAG 

 
Skin friction drag is due to the viscous shearing that takes place between the surface and the 
layer of fluid immediately above it. This occurs on surfaces of objects that are long in the 
direction of flow compared to their height. Such bodies are called STREAMLINED. When a 
fluid flows over a solid surface, the layer next to the surface may become attached to it (it 
wets the surface). This is called the ‘no slip condition’. The layers of fluid above the surface 
are moving so there must be shearing taking place between the layers of the fluid. The shear 
stress acting between the wall and the first moving layer next to it is called the wall shear 
stress and denoted τw. 

 
The result is that the velocity of the fluid u increases 
with height y. The boundary layer thickness δ is 
taken as the distance required for the velocity to 
reach 99% of uo. This layer is called the 
BOUNDARY LAYER and δ is the boundary layer 
thickness. Fig. 1.1 Shows how the velocity "u" varies 
with height "y" for a typical boundary layer. 

 
 
 
 
 

 
 Fig.1.1 

 
In a pipe, this is the only form of drag and it results in a pressure and energy lost along the 
length. A thin flat plate is an example of a streamlined object. Consider a stream of fluid 
flowing with a uniform velocity uo. When the stream is interrupted by the plate (fig. 1.2), the 
boundary layer forms on both sides. The diagram shows what happens on one side only. 

 
Fig. 1.2 

The boundary layer thickness δ grows with distance from the leading edge. At some distance 
from the leading edge, it reaches a constant thickness. It is then called a FULLY 
DEVELOPED BOUNDARY LAYER. 
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The Reynolds number for these cases is defined as:  
µ

ρ
=

xu
)R( o

xe  

x is the distance from the leading edge. At low Reynolds numbers, the boundary layer may be 
laminar throughout the entire thickness. At higher Reynolds numbers, it is turbulent. This 
means that at some distance from the leading edge the flow within the boundary layer 
becomes turbulent. A turbulent boundary layer is very unsteady and the streamlines do not 
remain parallel. The boundary layer shape represents an average of the velocity at any height. 
There is a region between the laminar and turbulent section where transition takes place 
  
The turbulent boundary layer exists on top of a thin laminar layer called the LAMINAR SUB 
LAYER. The velocity gradient within this layer is linear as shown. A deeper analysis would 
reveal that for long surfaces, the boundary layer is turbulent over most of the length. Many 
equations have been developed to describe the shape of the laminar and turbulent boundary 
layers and these may be used to estimate the skin friction drag. 
 
Note that for this ideal example, it is assumed that the velocity is the undisturbed velocity uo 
everywhere outside the boundary layer and that there is no acceleration and hence no change 
in the static pressure acting on the surface. There is hence no drag force due to pressure 
changes. 
 
CALCULATING SKIN DRAG 
 
The skin drag is due to the wall shear stress τw and this acts on the surface area (wetted area).  
The drag force is hence: R = τw x wetted area. The dynamic pressure is the pressure resulting 
from the conversion of the kinetic energy of the stream into pressure and is defined by the 

expression 
2
u 2

oρ
.The drag coefficient is defined as  

   

 u
2

area  x wettedu
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area d   x wettepressure dynamic
force DragC

2
0

w
2
0

Df

Df

ρ

τ
=

ρ
=

=

 

 
Note that this is the same definition for the pipe friction coefficient Cf and it is in fact the 
same thing. It is used in the Darcy formula to calculate the pressure lost in pipes due to 
friction. For a smooth surface, it can be shown that CDf = 0.074 (Re)x

-1/5  

(Re)x  is the Reynolds number based on the length.  
µ

ρ
=

Lu
)R( o

xe  
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WORKED EXAMPLE 1.1 
 
Calculate the drag force on each side of a thin smooth plate 2 m long and 1 m wide with the 
length parallel to a flow of fluid moving at 30 m/s. The density of the fluid is 800 kg/m3 and 
the dynamic viscosity is 8 cP. 
 
SOLUTION 

N 2347.2  1 x 2 x 1173.6  Area  x Wetted  R
Pa 1173.6 10 x 360 x 0.00326  pressure dynamic x C  

kPa 360 
2

30 x 800  
2
u

  pressure Dynamic

0.00326  ) x10(6 x 0.074 C

10 x 6 
0.008

2 x 30  x 800 
Lu

)R(

w

3
Dfw

22
0

5
1

6
Df

6o
xe

==τ=
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==
ρ

=

==

==
µ

ρ
=

−

 

 
 
On a small area the drag is dR = τw dA. If the body is not a thin plate and has an area inclined 
at an angle θ to the flow direction, the drag force in the direction of flow is τw dA cosθ. 

Fig.1.3 
 
The drag force acting on the entire surface area is found by integrating over the entire area. 

∫ θτ= dA cosR w  

Solving this equation requires more advanced studies concerning the boundary layer and 
students should refer to the classic textbooks on this subject. 
 

 
SELF ASSESSMENT EXERCISE No. 1 
 

1. A smooth thin plate 5 m long and 1 m wide is placed in an air stream moving at 3 m/s 
with its length parallel with the flow. Calculate the drag force on each side of the plate. 
The density of the air is 1.2 kg/m3 and the kinematic viscosity is 1.6 x 10-5 m2/s.  

 (0.128 N) 
 

2. A pipe bore diameter D and length L has fully developed laminar flow throughout the 
entire length with a centre line velocity uo. Given that the drag coefficient is given as 

CDf = 16/Re where 
µ

ρ
=

Du
Re o , show that the drag force on the inside of the pipe is 

given as R=8πµuoL and hence the pressure loss in the pipe due to skin friction is  
 pL = 32µuoL/D2 
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1.2 FORM DRAG and WAKES 
 
Form or pressure drag applies to bodies that are tall in comparison to the length in the 
direction of flow. Such bodies are called BLUFF BODIES. 
 
Consider the case below that could for example, be the pier of a bridge in a river. The water 
speeds up around the leading edges and the boundary layer quickly breaks away from the 
surface. Water is sucked in from behind the pier in the opposite direction. The total effect is to 
produce eddy currents or whirl pools that are shed in the wake. There is a build up of positive 
pressure on the front and a negative pressure at the back. The pressure force resulting is the 
form drag. When the breakaway or separation point is at the front corner, the drag is almost 
entirely due to this effect but if the separation point moves along the side towards the back, 
then a boundary layer forms and skin friction drag is also produced. In reality, the drag is 
always a combination of skin friction and form drag. The degree of each depends upon the 
shape of the body. 

Fig.1.4 
The next diagram typifies what happens when fluid flows around a bluff object. The fluid 
speeds up around the front edge. Remember that the closer the streamlines, the faster the 
velocity. The line representing the maximum velocity is shown but also remember that this is 
the maximum at any point and this maximum value also increases as the stream lines get 
closer together.  
 

 
Fig.1.5 
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Two important effects affect the drag. 
  
Outside the boundary layer, the velocity increases up to point 2 so the pressure acting on the 
surface goes down. The boundary layer thickness δ gets smaller until at point S it is reduced 
to zero and the flow separates from the surface. At point 3, the pressure is negative. This 
change in pressure is responsible for the form drag. 
 
Inside the boundary layer, the velocity is reduced from umax to zero and skin friction drag 
results. 

 
Fig.1.6 

 
In problems involving liquids with a free surface, a negative pressure shows up as a drop in 
level and the pressure build up on the front shows as a rise in level. If the object is totally 
immersed, the pressure on the front rises and a vacuum is formed at the back. This results in a 
pressure force opposing movement (form drag). The swirling flow forms vortices and the 
wake is an area of great turbulence behind the object that takes some distance to settle down 
and revert to the normal flow condition. 
 
Here is an outline of the mathematical approach needed to solve the form drag. 
 
Form drag is due to pressure changes only. The drag coefficient due to pressure only is 
denoted CDp and defined as 

    

area projected x u
R2C

area projected   x pressure dynamic
force DragC

2
0

Dp

Dp

ρ
=

=

 

 
The projected area is the area of the outline of the shape projected at right angles to the flow. 
The pressure acting at any point on the surface is p. The force exerted by the pressure on a 
small surface area is p dA. If the surface is inclined at an angle θ to the general direction of 
flow, the force is p cosθ dA. The total force is found by integrating all over the surface. 

∫ θ= dA cospR  

The pressure distribution over the surface is often expressed in the form of a pressure 
coefficient defined as follows. 

   2
o

o
p u

)p - p(2
C

ρ
=  

po is the static pressure of the undisturbed fluid, uo is the velocity of the undisturbed fluid and 

2
u 2

oρ
is the dynamic pressure of the stream. 
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Consider any streamline that is affected by the surface. Applying Bernoulli between an 
undisturbed point and another point on the surface, we have the following. 

2
o

2
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In order to calculate the drag force, further knowledge about the velocity distribution over the 
object would be needed and students are again recommended to study the classic textbooks on 
this subject. The equation shows that if u<uo then the pressure is positive and if u>uo the 
pressure is negative. 
  
1.3 TOTAL DRAG  
 
It has been explained that a body usually experiences both skin friction drag and form drag. 
The total drag is the sum of both. This applies to aeroplanes and ships as well as bluff objects 
such as cylinders and spheres. The drag force on a body is very hard to predict by purely 
theoretical methods. Much of the data about drag forces is based on experimental data and the 
concept of a drag coefficient is widely used.  
 
The DRAG COEFFICIENT is denoted CD and is defined by the following expression. 
 

Area projected x pressure Dynamic
force ResistanceCD =  

 

Area projected x ρu
2RC 2

o
D =
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 WORKED EXAMPLE 1.2 
 
 A cylinder 80 mm diameter and 200 mm long is placed in a stream of fluid flowing at 

0.5 m/s. The axis of the cylinder is normal to the direction of flow. The density of the 
fluid is 800 kg/m3. The drag force is measured and found to be 30 N. 

 
 Calculate the drag coefficient. 
 
 At a point on the surface the pressure is measured as 96 Pa above the ambient level. 
 
 Calculate the velocity at this point. 
 
 SOLUTION 
 
 Projected area = 0.08 x 0.2 =0.016 m2 
 R = 30 N 
 uo = 0.5 m/s 
 ρ = 800 kg/m3 
 dynamic pressure = ρuo

2/2 = 800 x 0.52/2 = 100 Pa
  

 
75.18

0.016 x 100
30 

Area projected x pressure Dynamic
force ResistanceCD ===

 
 

 

m/s 1.0u
0.01u

u - 0.25 0.24

)u (0.5  
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2 x 96

)u (0.5
2
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)u - (u
2
ρ  p - p

2
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=
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1.4 APPLICATION TO A CYLINDER 
 

The drag coefficient is defined as :   
Area projected x ρu

2RC 2
o

D = The projected Area is LD 

where L is the length and D the diameter. The drag around long cylinders is more predictable 
than for short cylinders and the following applies to long cylinders. Much research has been 

carried out into the relationship between drag and Reynolds number. 
µ

ρ
=

du
Re o and d is the 

diameter of the cylinder. At very small velocities, (Re <0.5) the fluid sticks to the cylinder all 
the way round and never separates from the cylinder. This produces a streamline pattern 
similar to that of an ideal fluid. The drag coefficient is at its highest and is mainly due to skin 
friction. The pressure distribution shows that the dynamic pressure is achieved at the front 
stagnation point and vacuum equal to three dynamic pressures exists at the top and bottom 
where the velocity is at its greatest. 

 
Fig.1.7 

 
As the velocity increases the boundary layer breaks away and eddies are formed behind. The 
drag becomes increasingly due to the pressure build up at the front and pressure drop at the 
back. 

 
Fig.1.8 
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Further increases in the velocity cause the eddies to elongate and the drag coefficient becomes 
nearly constant. The pressure distribution shows that ambient pressure exists at the rear of the 
cylinder. 

 
Fig.1.9 

 
 
At a Reynolds number of around 90 the vortices break away alternatively from the top and 
bottom of the cylinder producing a vortex street in the wake. The pressure distribution shows 
a vacuum at the rear. 

 
Fig.1.10 

 
Up to a Reynolds number of about 2 x 105, the drag coefficient is constant with a value of 
approximately 1. The drag is now almost entirely due to pressure. Up to this velocity, the 
boundary layer has remained laminar but at higher velocities, flow within the boundary layer 
becomes turbulent. The point of separation moves back producing a narrow wake and a 
pronounced drop in the drag coefficient. 
 
When the wake contains vortices shed alternately from the top and bottom, they produce 
alternating forces on the structure. If the structure resonates with the frequency of the vortex 
shedding, it may oscillate and produce catastrophic damage. This is a problem with tall 
chimneys and suspension bridges. The vortex shedding may produce audible sound. 
 
Fig. 1.12 shows an approximate relationship between CD and Re for a cylinder and a sphere. 
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 SELF ASSESSMENT EXERCISE No. 2 
 
1. Calculate the drag force for a cylindrical chimney 0.9 m diameter and 50 m tall in a wind 

blowing at 30 m/s given that the drag coefficient is 0.8.  
 The density of the air is 1.2 kg/m3. (19.44 N) 
 
2 Using the graph (fig.1.12) to find the drag coefficient, determine the drag force per metre 

length acting on an overhead power line 30 mm diameter when the wind blows at 8 m/s. 
The density  of  air  may  be  taken  as   1.25 kg/m3   and   the   kinematic   viscosity as 
1.5 x 10-5 m2/s. (1.8 N). 

 
 
 
 
1.5 APPLICATION TO SPHERES 
 
The relationship between drag and Reynolds number is roughly the same as for a cylinder but 

it is more predictable. The Reynolds number is 
µ

ρ
=

du
Re o  where d is the diameter of the 

sphere. The projected area of a sphere of diameter d is ¼ πd2. In this case, the expression for 

the drag coefficient is as follows. 22D d x ρu
8RC
π

=
.
 

 At very small Reynolds numbers (less than 0.2) the flow stays attached to the sphere all the 
way around and this is called Stokes flow. The drag is at its highest in this region. 
 
As the velocity increases, the boundary layer separates at the rear stagnation point and moves 
forward. A toroidal vortex is formed. For 0.2<Re<500 the flow is called Allen flow. 
 

 
Fig.1.11 

 
The breakaway or separation point reaches a stable position approximately 80o from the front 
stagnation point and this happens when Re is about 1000. For 500<Re the flow is called 
Newton flow. The drag coefficient remains constant at about 0.4. Depending on various 
factors, when Re reaches 105 or larger, the boundary layer becomes totally turbulent and the 
separation point moves back again forming a smaller wake and a sudden drop in the drag 
coefficient to about 0.3. There are two empirical formulae in common use.  

For 0.2 < Re < 105  4.0
R1

6
R
24C

ee
D +

+
+=  
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For  Re <1000 [ ]687.0Re15.0124
+=

e
D R

C   

 

 
Fig. 1.12 shows this approximate relationship between CD and Re. 

 
 

 
Fig.1.12 

 
 
 

 WORKED EXAMPLE 1.3 

 

 A sphere diameter 40 mm moves through a fluid of density 750 kg/m3 and dynamic 

viscosity 50 cP with a velocity of 0.6 m/s. Note 1 cP = 0.001 Ns/m2. 

 Calculate the drag on the sphere. 

 Use the graph to obtain the drag coefficient. 

 

 SOLUTION 

 

 

N 0.136  
2

 10 x 1.2566 x0.6 x 750 x 0.8 
2

A ρuC
  R

m10 x 1.2566  
4

0.04  
4

d  area Projected          
Area projected x ρu

2RC

0.8Cgraph   thefrom

360 
0.05

0.04 x 0.6 x 750
µ
ρudRe

3-22
D

23-
22

2D

D

===

=π=π==

=

===
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1.6 TERMINAL VELOCITY 
 
When a body falls under the action of gravity, a point is reached, where the drag force is equal 
and opposite to the force of gravity. When this condition is reached, the body stops 
accelerating and the terminal velocity reached. Small particles settling in a liquid are usually 
modelled as small spheres and the preceding work may be used to calculate the terminal 
velocity of small bodies settling in a liquid. A good application of this is the falling sphere 
viscometer described in earlier work. 
 
For a body immersed in a liquid, the buoyant weight is W and this is equal to the viscous 
resistance R when the terminal velocity is reached. 

R = W = volume x gravity x density difference 
( )

6
gd fs

3 ρ−ρπ
=  

ρs = density of the sphere material 
ρf = density of fluid 
d =  sphere diameter 
 
STOKES’ FLOW 
 
For Re<0.2 the flow is called Stokes flow and Stokes showed that R = 3πdµut 
For a falling sphere viscometer, Stokes flow applies. Equating the drag force and the buoyant 
weight we get 

( )

( )
t

fs
2

fs
3

t

u18
gd

6
gd

ud3

ρ−ρ
=µ

ρ−ρπ
=µπ

 

The terminal velocity for Stokes flow is 
( )

µ
ρ−ρ

=
18

gd
u fs

2

t  

This formula assumes a fluid of infinite width but in a falling sphere viscometer, the liquid is 
squeezed between the sphere and the tube walls and additional viscous resistance is produced. 
The Faxen correction factor F is used to correct the result. 
  
 
 WORKED EXAMPLE 1.4 
 
 The terminal velocity of a steel sphere falling in a liquid is 0.03 m/s. The sphere is 1 mm 

diameter and the density of the steel is 7830 kg/m3. The density of the liquid is 800 
kg/m3. Calculate the dynamic and kinematic viscosity of the liquid. 

 
 SOLUTION 
 
 Assuming Stokes’ flow the viscosity is found from the following equation. 

 

( )

cSt 159.6  s/m 0001596.0
800
1277.0

cP 7.127Ns/m 0.1277 
0.03 x 18

800) - (7830 x 9.81  x 001.0
u18

gd

2

s

2
2

t

fs
2

===
ρ
µ

=ν

===
ρ−ρ

=µ
 

 Check the Reynolds number. 0.188 
0.0547

0.001 x 0.03 x 800ud
R f

e ==
µ

ρ
=  

 As this is smaller than 0.2 the assumption of Stokes’ flow is correct. 
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ALLEN FLOW 

 
For 0.2 < Re < 500 the flow is called Allen flow and the following expression gives the 
empirical relationship between drag and Reynolds number. CD=18.5Re

-0.6 
 

Equating for CD gives the following result. 6.0
e22

tf
D R5.18

d  uρ
8RC −=
π

=  

Substitute 
( )

6
gd

R fs
3 ρ−ρπ

=
 

 
( )

( ) 6.0
tf

2
tf

fs

6.0
tf6.0

e2
tf

fs
D

du
5.18

u6ρ
8dg

du
5.18R5.18

u6ρ
8dg

C

−

−
−









µ

ρ
=

ρ−ρ









µ

ρ
==

ρ−ρ
=

 

From this equation the velocity ut may be found. 
 
NEWTON FLOW 
 
For 500 < Re < 105 CD takes on a constant value of 0.44. 
 

Equating for CD gives the following. 44.0
d  uρ

8RC 22
tf

D =
π

=  

Substitute 
( )

6
gd

R fs
3 ρ−ρπ

=  

( )

( )
f

fs
t

2
tf

fs

ρ
29.73dg

u

44.0
u6ρ

8dg

ρ−ρ
=

=
ρ−ρ

 

When solving the terminal velocity, you should always check the value of the Reynolds 
number to see if the criterion used is valid. 
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 WORKED EXAMPLE 1.5 
 
 Small glass spheres are suspended in an up wards flow of water moving with a mean 

velocity of 1 m/s. Calculate the diameter of the spheres. The density of glass is 2630 
kg/m3. The density of water is 1000 kg/m3 and the dynamic viscosity is 1 cP. 

 
 SOLUTION 
 
 First, try the Newton flow equation. This is the easiest. 
 

 

( )

( ) ( ) mm 2.1or    m 0.0021 
1000 - 2630 x 9.81 x 29.73

1000 x 1
ρρg 29.73

ρu
d

ρ
ρρg 29.73d

u

2

fs

f
2
t

f

fs
t

==
−

=

−
=

 

 
 Check the Reynolds number. 
 

 2103 
0.001

0.0021 x 1 x 1000du
R tf

e ==
µ

ρ
=  

 The assumption of Newton flow was correct so the answer is valid. 
 
 
 
 
 WORKED EXAMPLE 1.6 
 
 Repeat the last question but this time with a velocity of 0.05 m/s. Determine the type of 

flow that exists. 
 
 SOLUTION 
 If no assumptions are made, we should use the general 

formula 4.0
R1

6
R
24C

ee
D +

+
+=  

 

0.4
223.6d1

60.00048dC

0.4
50000d1
6

50000d
24C

0.4
R1

6
R
24C

000d 50 
0.001

d x 0.05 x 1000
µ

duρ
R

0.5
1

D

D

ee
D

tf
e

+
+

+=

+
+

+=

+
+

+=

===
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( )

0.4
223.6d1

60.00048d  8528.16d

8528.16d 
0.05 x 1000 x 6

1000)- (2630 x 9.81 x 8d
u6ρ
ρρ8dg

C

0.5
1

22
f

fs
D

+
+

+=
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−

=

−
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 This should be solved by any method known to you such as plotting two functions and 

finding the point of interception.  
 

 4.0
d6.2231

6d00048.0  f2(d)

8528.16d  f1(d)

5.0
1 +

+
+=

=

−  

 
 The graph below gives an answer of d = 0.35 mm. 
 

 
Fig. 1.13 

 

Checking the Reynolds’ number  17.5 
0.001

0.00035 x 0.05 x 1000du
R tf

e ==
µ

ρ
=  

This puts the flow in the Allen's flow section. 
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ANOTHER METHOD OF SOLUTION 
 
It has been shown previously that the drag coefficient for a sphere is given by the formula 

22

8
ud

RCD ρπ
= . R is the drag force. One method of solving problems is to arrange the 

formula into the form CD Re
2 as follows. 

2
2

22222

2

22

2

22

8

1888

πµ

ρ

πµ

ρ

ρ
µ

πµ

ρ

µρ

µρ

ρπ

f
eD

e

f

f

f

f

f

f
D

R
RC

R
x

R
du

x
R

x
ud

RC

=

===

 

If the sphere is falling and has reached its terminal velocity, R = buoyant weight. 
( )

( )

( )
).....(..........

3
4

6
8

6

2

3
2

2

3
2

3

A
gd

RC

gd
RC

gd
R

fsf
eD

ffs
eD
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µ

ρρρ
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ρρρπ

ρρπ

−
=

−
=

−
=

 

The drag coefficient for a sphere is related to the Reynolds number as described previously. 
There are two equations commonly used for this relationship as follows. 
 

)........(..........4.0
1

624 B
RR

C
ee

D +
+

+=   

and 

[ ] )........(..........15.0124 687.0 CR
R

C e
e

D +=  

Either B or C may be used in the solution of problems. The general method is to solve ReCD
2 

from equation A. Next compose a table of values of Re, CD, and ReCD
2. Plot ReCD

2 vertically 
and Re horizontally. Find the value of Re that gives the required value of ReCD

2. From this the 
velocity may be deduced. 
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WORKED EXAMPLE 1.7 
 
A sphere 1.5 mm diameter falls in water. The density of the sphere is 2500 kg/m3. The density 
and dynamic viscosity of water is 997 kg/m3 and 0.89 x 10-3 Ns/m2 respectively. The drag 

coefficient is given by the formula [ ]687.015.0124
e

e
D R

R
C += . Determine the terminal 

velocity. 
 
SOLUTION 

( ) ( ) 83513
)1089.0(3

997250099781.9)0015.0(4
3

4
23

3

2

3
2 =

−
=

−
=

−x
xxgd

RC fsf
eD µ

ρρρ
 

Next compile a table using the formula [ ]687.0Re15.0124
+=

e
D R

C . 

 
Re 0.1 1 10 100 1000 
CD 24.7 27.6 4.15 1.09 0.44 
CDRe

2 2.47 27.6 415 109 438288 
 
We are looking for a value of  CDRe

2 = 83513 and it is apparent that this occurs when Re is 
between 100 and 1000. By plotting or by narrowing down the figure by trial and error we find 
that the correct value of Re is 356. 
 
Re = 356 = ρfud/µ 
 
356 = 997 x u x 0.0015/0.89 x 10-3 

 
u = 0.212 m/s and this is the terminal velocity. 
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 SELF ASSESSMENT EXERCISE No. 3 
 
1. a. Explain the term Stokes flow and terminal velocity. 
 
 b. Show that the terminal velocity of a spherical particle with Stokes flow is given by the 

formula u = d2g(ρs - ρf)/18µ 
 
 Go on to show that CD=24/Re 
 
2. Calculate the largest diameter sphere that can be lifted upwards by a vertical flow of 

water moving at 1 m/s. The sphere is made of glass with a density of 2630 kg/m3. The 
water has a density of 998 kg/m3 and a dynamic viscosity of 1 cP. (20.7 mm) 

 
3. Using the same data for the sphere and water as in Q2, calculate the diameter of the 

largest sphere that can be lifted upwards by a vertical flow of water moving at 0.5 m/s. 
(5.95 mm). 

 
4. Using the graph (fig. 1.12) to obtain the drag coefficient of a sphere, determine the drag 

on a totally immersed sphere 0.2 m diameter moving at 0.3 m/s in sea water. The density 
of the water is 1025 kg/m3 and the dynamic viscosity is 1.05 x 10-3 Ns/m2. (0.639 N). 

   
5. A glass sphere of diameter 1.5 mm and density 2 500 kg/m3 is allowed to fall through 

water under the action of gravity. The density of the water is 1000 kg/m3 and  the 
dynamic viscosity is 1 cP. 

 
 Calculate the terminal velocity assuming the drag coefficient is 
 CD = 24 Re -1 (1+ 0.15Re 0.687)  (Ans. 0.215 m/s 
 
 
6. Similar to part of Q1 1990  
 
 A glass sphere of density 2 690 kg/m3 falls freely through water. Find the terminal 

velocity for a 4 mm diameter sphere and a 0.4 mm diameter sphere. 
 
 The drag coefficient is CD = 8F/{πd2ρu2}  
 This coefficient is related to the Reynolds number as shown.  
 
 Re 15 20 25 30 35 
 CD 3.14 2.61 2.33 2.04 1.87  
 
 The density and viscosity of the water is 997 kg/m3 and 0.89 x 10-3 N s/m2. 
 
 Answer 0.45 m/s and 0.06625 m/s. 
 
7. Similar to part of Q4 1988. 
 
 A glass sphere of diameter 1.5 mm and density 2 500 kg/m3 is allowed to fall through 

water under the action of gravity. Find the terminal velocity assuming the drag coefficient 
is CD = 24 Re-1(1+ 0.15Re0.687) 
(Ans. 0.215 m/s) 
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8. Similar to Q1 1986  
 
 The force F on a sphere of diameter d moving at velocity um in a fluid is given by 
 F = CD {πd2ρum2}/8  
 
 For Reynolds numbers less than 1 000, CD is given by CD= 24 Re-1(1+ 0.15Re0.687) 
 
 Estimate the terminal velocity of a glass sphere 1 mm diameter and density  2 650 kg/m3 

in water of density 997 kg/m3 and viscosity 0.89 x 10-3 N s/m2. 
 
 Answer 0.15 m/s 
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2. BOUNDARY LAYERS 
 
In this tutorial we will look at the shape of various types of boundary layers. We will look at 
the mathematical equations for the shape of the boundary layer and use them to solve 
problems. 
 
You may recall that the definition of a BL is the thickness of that layer next to a surface in 
which the velocity grows from zero to a maximum value (or so close to a maximum as to be 
of no practical difference). This thickness is usually given the symbol δ (small delta). 
 
The boundary layer, once established may have a constant thickness but, for example, when a 
flow meets the leading edge of a surface, the boundary layer will grow as shown (fig.2.1). 
 

 
Fig.2.1 

 
When the flow enters a pipe the BL builds up from all around the entrance and a cross section 
shows the layer meets at the centre (fig.2.2) 

Fig.2.2 
 

The symbol u1 is used to designate the maximum velocity in the fully developed layer. The 
fully developed layer may be laminar or turbulent depending on the Reynolds’ Number. 
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The velocity profile for a typical case is shown on fig.2.3. 

  
 Fig.2.3 

 
The shear stress between any two horizontal layers is τ. For a Newtonian Fluid the 
relationship between shear stress, dynamic viscosity (µ) and rate of shear strain  (du/dy) is  

 τ = µ du/dy 
 

At the wall the shear stress is called the WALL SHEAR STRESS, τo and occurs at y = 0. 
Note that the gradient du/dy is the rate of shear strain and it is steeper for turbulent flow than 
for laminar flow giving a greater shear resistance. 
 
The solution of problems is simplified by the concepts of DISPLACEMENT THICKNESS 
AND MOMENTUM THICKNESS which we will now examine. 
 
2.1. DISPLACEMENT THICKNESS  δ* 
 
The flow rate within a boundary layer is less than that for a uniform flow of velocity u1. The 
reduction in flow is equal to the area under the curve in fig.2.3. If we had a uniform flow 
equal to that in the boundary layer, the surface would have to be displaced a distance δ* in 
order to produce the reduction. This distance is called the displacement thickness and it is 
given by : 

 [ ] ∗=−= ∫ δ
δ

1
0

1u redution  flow udyu  

                
If this is equivalent to a flow of velocity u1 in a layer δ* thick then : 
 

            dy
u
u

∫ 







−=∗

δ

δ
0 1

1    

 
 
2.2.  MOMENTUM THICKNESS   θ 
 
The momentum in a flow with a BL present is less than that in a uniform flow of the same 
thickness. The momentum in a uniform layer at velocity u1 and height h is ρhu12. When a BL 
exists this is reduced by ρu12θ.  Where θ is the thickness of the uniform layer that contains 
the equivalent to the reduction.  Using the same reasoning as before we get : 
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u
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2.3. BOUNDARY LAYER LAWS 
 
The velocity at any distance y above a surface is a function of the wall shear stress, the 
dynamic viscosity and the density. 

u =φ(y,  τo, ρ  ,µ) 
If you are familiar with the method of dimensional analysis you may wish to show for 
yourself that : 

u(ρ/τo)½ = φ{y(τo)½} 
 

Generally the law governing the growth of a BL is of the form  u = φ(y) and the limits must be 
that u = 0 at the wall and u = u1 in the fully developed flow. There are many ways in which 
this is expressed according to the Reynolds’ Number for the flow. The important boundary 
conditions that are used in the formulation of boundary layer laws are: 
 
1. The velocity is zero at the wall ( u = 0 @ y = 0). 
 
2. The velocity is a maximum at the top of the layer ( u = u1 @ y = δ). 
 
3. The gradient of the b.l. is zero at the top of the layer (du/dy = 0 @ y = δ). 
 
4. The gradient is constant at the wall  (du/dy = C @ y = 0). 
 
5. Following from (4)  d2u/dy2 = 0 @ y = 0). 
 
Let us start by considering LAMINAR BOUNDARY LAYERS. 
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2.3.1  LAMINAR BOUNDARY LAYERS 
 
One of the laws which seem to work for laminar flow is u = u1 sin(π y/2δ) 

 

WORKED EXAMPLE No.2.1 
 
Find the displacement thickness δ* for a Laminar BL modelled by the equation 
 u = u1 sin(π y/2δ) 
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Another way of expressing the shape of the laminar BL is with a power law. The next 
example is typical of that used in the examination. 
 

WORKED EXAMPLE No.2.2 
 
The velocity distribution inside a laminar BL over a flat plate is described by the cubic law : 

u/u1 = a0 + a1y + a2y2 + a3y3 

 
Show that the momentum thickness is  39δ/280  
 
SOLUTION 
 
At y = 0, u = 0 so it follows that a0 = 0 
 
 d2u/dy2 = 0 @ y = 0  so a2= 0. Show for yourself that this is so. 
 
The law is reduced to        u/u1 = a1y + a3y3 

at y = δ, u = u1 so 1 = a1δ + 3a3δ2 

hence  a1 =(1-a3δ3)/δ 

 
Now differentiate and   du/dy = u1(a1+3a3y2) 
at y = δ, du/dy is zero so  0 =a1+ 3a3δ2  so a1= -3a3δ2 

 
Hence by equating  a1= 3/2δ   and a3 = -1/2δ3 
 
Now we can write the velocity distribution as  u/u1=3y/2δ -(y/δ)3/2 
 
and  du/dy = u1{3/2δ + 3y2/2δ3} 
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If we give the term y/δ the symbol  η we may rewrite the equation as: 
 
   u/u1=3η/2 - η3/2 
 
The momentum thickness θ is given by : 
 

ηηηηηθ

ηδθ
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Integrating gives : 

  



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
+−−−=
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3

2812
9

84
3 57342 ηηηηηδθ  

 
 between the limits η=0 and η=1 this evaluates to  
 

θ = 39δ/280 
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WORKED EXAMPLE No.2.3 
 
Show that δ/x=4.64Re-0.5 for the same case as before. 
 
SOLUTION 
 
We must first go back to the basic relationship. From the previous page 
  du/dy = u1{3/2δ + 3y2/2δ3} 
 At the wall where y=0 the shear stress is     
  τo=µdu/dy = µu1{3/2δ + 3y2/2δ3} =(µu1/δ) δ [(3/2δ) +3y2/2δ3]  
Putting y/δ= η we get : 
  τo = (µu1/δ) δ [(3/2δ) +3δ2/2δ] 
  τo = (µu1/δ) [(3/2) +3δ2/2] 
at the wall η=0 τo = (µu1/δ) (3/2)………........(2.1) 
 
The friction coefficient  Cf  is always defined as 
 
  Cf = τo/(ρ u1

2/2).............(2.2) 
 
It has been shown elsewhere that Cf = 2dθ/dx. The student should search out this information 
from test books. 
 
Putting θ = 39δ/280 (from the last example) then  
  Cf = 2dθ/dx = (2x39/280) dδ/dx   ..............(2.3) 
 
equating (2.2) and (2.3) gives      
  
  τo=( ρu1

2)(39/280)dδ/dx .............(2.4) 
 
equating (2.1) and (2.4) gives 
 
  (ρu1

2)(39/280)dδ/dx = (µu/δ)(3/2) 
 
hence  (3 x 280)/(2 x 39)(µdx)/ρu) = δdδ 
 
Integrating  10.77(µx/ ρu1) = δ2/2 + C 
 
Since δ = 0 at x = 0  (the leading edge of the plate) then  C=0 
 
hence  δ= {21.54µx/ρu1}½ 
 
dividing both sides by x gives δ/x = 4.64(µ/ρu1x)-½ = 4.64Re-½ 
 
NB  Rex=   ρu1x/µ   and is based on length from the leading edge. 
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SELF ASSESSMENT EXERCISE No. 4 
 
 
1. The BL over a plate is described by  u/u1=sin(πy/2δ). Show that the momentum thickness 

is 0.137δ. 
 
2. The velocity profile in a laminar boundary layer on a flat plate is to be modelled by the 

cubic expression  u/u1=a0+a1y + a2y2+a3y3 
 where u is the velocity a distance y from the wall and u1 is the main stream velocity. 
 Explain why a0 and a2 are zero and evaluate the constants a1 and a3 in terms of the 

boundary layer thickness δ. 
 
 Define the momentum thickness θ and show that it equals 39δ/280 
 Hence evaluate the constant A in the expression 
 δ/x = A (Rex)-0.5 

 where x is the distance from the leading edge of the plate. It may be assumed without 
proof that the friction factor Cf = 2 dθ/dx 

 
3. (a) The velocity profile in a laminar boundary layer is sometimes expressed in the form

 u/u1=a0+a1(y/δ)+a2(y/δ)2+a3 (y/δ)3+a4(y/δ)4 
 where u1 is the velocity outside the boundary layer and δ is the boundary layer 

thickness. Evaluate the coefficients a0 to a4 for the case when the pressure gradient 
along the surface is zero. 

 
 (b) Assuming a velocity profile u/u1=2(y/δ) - (y/δ)2   obtain an expression for the 

mass and momentum fluxes within the boundary layer and hence determine the 
displacement and momentum thickness. 

 
4.  When a fluid flows over a flat surface and the flow is laminar, the boundary layer 

profile may be represented by the equation 
 

  u/u1= 2(η) - (η)2    where η = y/δ 
 
 y is the height within the layer and δ is the thickness of the layer. u is the velocity 

within the layer and u1 is the velocity of the main stream.  
 
 Show that this distribution satisfies the boundary conditions for the layer. 
 
 Show that the thickness of the layer varies with distance (x) from the leading edge by 

the equation  δ=5.48x(Rex)-0.5
 

 

 It may be assumed that τo = ρu1
2 dθ/dx 
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5.  Define the terms  displacement thickness δ *  and  momentum thickness θ. 
 Find the ratio of these quantities to the boundary layer thickness δ if the velocity profile 

within the boundary layer is given by  
     u/u1=sin(πy/2δ) 
 
 Show, by means of a momentum balance, that the variation of the boundary layer 

thickness δ with distance (x) from the leading edge is given by δ = 4.8(Rex)
-0.5 

 

 It may be assumed that τo = ρu12 dθ/dx 
 
 Estimate the boundary layer thickness at the trailing edge of a plane surface of length 

0.1 m when air at STP is flowing parallel to it with a free stream velocity u1 of 0.8 m/s. 
It may be assumed without proof that the friction factor Cf is given by  

 Cf = 2 dθ/dx 
 
 N.B. standard data    µ =  1.71 x 10-5 N s/m2. ρ = 1.29 kg/m3. 
 
 
6. In a laminar flow of a fluid over a flat plate with zero pressure gradient an 

approximation to the velocity profile is 
 
     u/u1=(3/2)(η) - (1/2)(η)3 

 
 η = y/δand u is the velocity at a distance y from the plate and u1 is the mainstream 

velocity. δ is  the boundary layer thickness. 
 
 Discuss whether this profile satisfies appropriate boundary conditions. 
 
 Show that the local skin-friction coefficient Cf is related to the Reynolds’ number 

(Rex) based on distance x from the leading edge by the expression 
 Cf  =A (Rex)-0.5 

 and evaluate the constant A. 
 
 It may be assumed without proof that  Cf = 2 dθ/dx 
 
 and that θ is the integral of  (u/u1)(1 - u/u1)dy between the limits 0 and δ 
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2.3.2  TURBULENT BOUNDARY LAYERS 
 
When a fluid flows at high velocities, the boundary layer becomes turbulent and the gradient 
at the wall becomes smaller so the wall shear stress is larger and the drag created on the 
surface increases. 
 

 
 

Fig. 2.4 
Prandtl found that a law which fits the turbulent case well for Reynolds’ numbers below 107 
is: 
 

u = u1(y/δ)1/7 
 
This is called the 1/7th law. 
 
The gradient of the B.L. is du/dy = u1δ

1/7y-6/7/7 
 
This indicates that at the wall where y=0, the gradient is infinite (horizontal). This is 
obviously incorrect and is explained by the existence of a laminar sub-layer next to the wall. 
In this layer the velocity grows very quickly from zero and merges with the turbulent layer. 
The gradient is the same for both at the interface of laminar and turbulent flow. The drag on 
the surface is due to the wall shear stress in the laminar sub-layer. 
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WORKED EXAMPLE No.2.4 
 
Show that the mean velocity in a pipe with fully developed turbulent flow is 49/60 of the 
maximum velocity. Assume the 1/7th law.  
 
For a pipe, the B.L. extends to the centre so δ = radius = R. Consider an elementary ring of 
flow. 

 
 

Fig.2.5 
 
The velocity through the ring is u. 
The volume flow rate through the ring is  2πrudr 
The volume flow rate in the pipe is Q = 2π∫rudr 

Since δ = R then   u = u1(y/R)
1/7

    
also     r = R-y 
 

   Q = 2π∫ (R-y)udr = 2π∫u1R
-1/7 (R-y)y

1/7
dy 

   Q =2πu1R
-1/7

[Ry
1/7

-y
8/7

] 

   Q =2πu1R
-1/7

[(7/8)Ry
8/7

- (7/15)y
15/7

] 

   Q =(49/60)πR
2

u1. 

The mean velocity is defined by  um=Q/πR
2

 
 
hence     um=(49/60)u1 
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2.4  FRICTION COEFFICIENT AND BOUNDARY LAYERS 
 
Earlier it was explained that the friction coefficient Cf is the ratio of the wall shear stress to 
the dynamic pressure so : 
  Cf = 2τo/(ρum

2) ..........................(2.4.1) 
 
For smooth walled pipes, Blazius determined that  Cf = 0.079Re-0.25 ........................(2.4.2) 
 
Equating (2.4.1) and (2.4.2) gives :  2τo/(ρum

2) = 0.079Re-0.25 

 
Note that um is the mean velocity and u1 is the maximum velocity.  
 
Research shows that   um=0.8u1 
 
Also Note that   Re=ρu1D/µ   and D = 2δ. 
 
Hence    τo=0.02125ρu1

2(µ/ρδu1) 0.25.............(2.4.3) 
 
2.5  FORCE BALANCE IN THE BOUNDARY LAYER 
 
The student should refer to textbooks for finer details of the following work. 
 
Consider again the growth of the B.L. as the fluid comes onto a flat surface. A stream line for 
the flow is not parallel to the B.L. Now consider a control volume A, B, C, D. 
 

 
 

Fig.2.6 
 

Balancing pressure force and shear force at the surface with momentum changes gives : 
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Using equations (2.4.2), (2.4.3) and (2.4.4) gives  (4/5)δ5/4= 0.231{µ/ρu}1/5x = Re-1/5 

 
The shear force on the surface is  Fs= τo x surface area 
The surface skin friction coefficient  is  Cf=2Fs/(ρu12) = 0.072Re-1/5 
Experiments have shown that a more accurate figure is :    Cf= 0.074Re-1/5 
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SELF ASSESSMENT EXERCISE No. 5 
 
 
1.  Under what circumstances is the velocity profile in a pipe adequately represented by 

the 1/7 th power law    u/u1=(y/R)
1/7

 where u is the velocity at distance y from the 
wall, R is the pipe radius and u1 is the centre-line velocity ? 

 
 The table shows the measured velocity profile in a pipe radius 30 mm. Show that these 

data satisfy the 1/7 th power law and hence evaluate  
 
 (i) the centre-line velocity 
 
 (ii) the mean velocity um 
 
 (iii) the distance from the wall at which the velocity equals um. 
 
1.0  2.0 5.0 10.0 15.0 20.0 y (mm) 
1.54 1.70 1.94 2.14 2.26 2.36 u (m/s) 
 

2. (a) Discuss the limitations of the 1/7th power law  u/u1=(y/R)
1/7

 for the velocity 
profile in a circular pipe of radius R, indicating the range of Reynolds numbers for 
which this law is applicable. 

 
 (b)  Show that the mean velocity is given by 49u1/60. 
 
 (c)  Water flows at a volumetric flow rate of 1.1 x 10-3 m3/s in a tube of diameter 

25 mm. Calculate the centre-line velocity and the distance from the wall at which the 
velocity is equal to the mean velocity. 

 

 (d)  Assuming that   Cf=0.079(Re)
-0.25

 evaluate the wall shear stress and hence 
estimate the laminar sub-layer thickness. 

 
 µ = 0.89 x 10-3 N s/m2. ρ=998 kg/m3. 
 
 

 


