## FLUID MECHANICS D203

## SAE SOLUTIONS TUTORIAL9 - COMPRESSIBLE FLOW

## SELF ASSESSMENT EXERCISE No. 1

1. Calculate the specific entropy change when a perfect gas undergoes a reversible isothermal expansion from 500 kPa to $100 \mathrm{kPa} . \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.

T is constant so $\Delta \mathrm{s}=\mathrm{mR} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)=1 \times 287 \mathrm{x} \ln (5 / 1)=462 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
2. Calculate the total entropy change when 2 kg of perfect gas is compressed reversibly and isothermally from $9 \mathrm{dm}^{3}$ to $1 \mathrm{dm}^{3}$. $\mathrm{R}=300 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
$\Delta \mathrm{s}=\mathrm{mR} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)=1 \times 300 \times \ln (1 / 9)=470 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
3. Calculate the change in entropy when 2.5 kg of perfect gas is heated from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant volume. Take $\mathrm{c}_{\mathrm{v}}=780 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ (Answer $470 \mathrm{~J} / \mathrm{K}$ )
$\Delta \mathrm{s}=\mathrm{m} \mathrm{C}_{\mathrm{v}} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)=2.5 \times 780 \times \ln (373 / 293)=-1318 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
4. Calculate the total entropy change when 5 kg of gas is expanded at constant pressure from $30^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. $\mathrm{R}=300 \mathrm{~J} / \mathrm{kg} \mathrm{K} \mathrm{c} \mathrm{c}_{\mathrm{v}}=800 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ (Answer $2.45 \mathrm{~kJ} / \mathrm{K}$ )
$\Delta \mathrm{s}=\mathrm{m} \mathrm{c}_{\mathrm{p}} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right) \quad \mathrm{c}_{\mathrm{p}}=\mathrm{R}+\mathrm{c}_{\mathrm{v}}=1100 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\Delta s==5 \times 1100 \times \ln (473 / 303)=2450 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
5. Derive the formula for the specific change in entropy during a polytropic process using a constant volume process from (A) to (2).

$$
\begin{aligned}
& \mathrm{s}_{2}-\mathrm{s}_{1}=\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{1}\right)-\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{2}\right) \\
& \mathrm{s}_{2}-\mathrm{s}_{1}=\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{1}\right)+\left(\mathrm{s}_{2}-\mathrm{s}_{\mathrm{A}}\right)
\end{aligned}
$$

For the constant temperature process

$$
\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{1}\right)=\mathrm{R} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{\mathrm{A}}\right)
$$

For the constant volume process

$$
\left(\mathrm{s}_{2}-\mathrm{s}_{\mathrm{A}}\right)=\left(\mathrm{c}_{\mathrm{v}} / \mathrm{R}\right) \ln \left(\mathrm{T}_{2} / \mathrm{T}_{\mathrm{A}}\right)
$$

Hence

$$
\Delta s=R \ln \frac{p_{1}}{p_{A}}+C_{p} \ln \frac{T_{2}}{T_{A}}+\mathrm{s}_{2}-\mathrm{s}_{1} \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{1}
$$



Then

$$
\Delta \mathrm{s}=\mathrm{s}_{2}-\mathrm{s}_{1}=\Delta \mathrm{s}=\mathrm{R} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{\mathrm{A}}}\right)+\mathrm{c}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{\mathrm{A}}}\right)
$$

Divide through by R $\quad \Delta \mathrm{s} / \mathrm{R}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{\mathrm{A}}}\right)+\frac{\mathrm{c}_{\mathrm{v}}}{\mathrm{R}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{A}}}\right)$
From the relationship between $c_{p}, c_{v}, R$ and $\gamma$ we have $c_{p} / R=\gamma /(\gamma-1)$
From the gas laws we have $\mathrm{p}_{\mathrm{A}} / \mathrm{T}_{\mathrm{A}}=\mathrm{p}_{2} / \mathrm{T}_{2} \quad \mathrm{p}_{\mathrm{A}}=\mathrm{p}_{2} \mathrm{~T}_{\mathrm{A}} / \mathrm{T}_{2}=\mathrm{p}_{2} \mathrm{~T}_{1} / \mathrm{T}_{2}$
Hence
$\frac{\Delta \mathrm{s}}{\mathrm{R}}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)+\frac{1}{\gamma-1} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{1+\frac{1}{\gamma-1}}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}$
6. A perfect gas is expanded from 5 bar to 1 bar by the law $\mathrm{pV}^{1.6}=\mathrm{C}$. The initial temperature is $200^{\circ} \mathrm{C}$. Calculate the change in specific entropy.

$$
\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{~K} \quad \gamma=1.4 .
$$

$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-1 / \mathrm{n}}=473(1 / 5)^{\mathrm{l}-1 / 1.6}=258.7 \mathrm{~K}$
$\Delta \mathrm{s}=\mathrm{Rln}\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}=287 \ln (5)\left(\frac{258.7}{473}\right)^{\frac{1.4}{0.4}}=-144 \mathrm{~J} / \mathrm{K}$
7. A perfect gas is expanded reversibly and adiabatically from 5 bar to 1 bar by the law $\mathrm{pV}^{\gamma}=\mathrm{C}$. The initial temperature is $200^{\circ} \mathrm{C}$. Calculate the change in specific entropy using the formula for a polytropic process. $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K} \quad \gamma=1.4$.
$\mathrm{T}_{2}=473(1 / 5)^{1-1 / 1.4}=298.6 \mathrm{~K}$
$\Delta \mathrm{s}=\mathrm{R} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}=287 \ln (5)\left(\frac{298.6}{473}\right)^{\frac{1.4}{0.4}}=0$

## SELF ASSESSMENT EXERCISE No. 2

Take $\gamma=1.4$ and $\mathrm{R}=283 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ in all the following questions.

1. An aeroplane flies at Mach 0.8 in air at $15{ }^{\circ} \mathrm{C}$ and 100 kPa pressure. Calculate the stagnation pressure and temperature. (Answers 324.9 K and 152.4 kPa )

$$
\begin{aligned}
& \frac{\Delta \mathrm{T}}{\mathrm{~T}}=\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}=0.8^{2} \frac{1.4}{2}=0.128 \quad \Delta \mathrm{~T}=0.128 \times 288=36.86 \mathrm{~K} \\
& \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}+1\right)^{\frac{k}{k-1}}=1.128^{3.5}=1.5243 \quad \mathrm{p}_{2}=100 \times 1.5243=152.43 \mathrm{kPa}
\end{aligned}
$$

2. Repeat problem 1 if the aeroplane flies at Mach 2.
$\frac{\Delta \mathrm{T}}{\mathrm{T}}=\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}=2^{2} \frac{1.4}{2}=0.8 \quad \Delta \mathrm{~T}=0.8 \times 288=230.4 \mathrm{~K}$
$\mathrm{T}_{2}=288+230.4=518.4 \mathrm{~K}$
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}+1\right)^{\frac{k}{k-1}}=1.8^{3.5}=7.824 \quad \mathrm{p}_{2}=100 \times 7.824=782.4 \mathrm{kPa}$
3. The pressure on the leading edges of an aircraft is 4.52 kPa more than the surrounding atmosphere. The aeroplane flies at an altitude of 5000 metres. Calculate the speed of the aeroplane. (Answer $109.186 \mathrm{~m} / \mathrm{s}$ )

From fluids tables, find that $\mathrm{a}=320.5 \mathrm{~m} / \mathrm{s} \quad \mathrm{p}_{1}=54.05 \mathrm{kPa} \quad \gamma=1.4$
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{58.57}{54.05}=1.0836=\left(\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}+1\right)^{\frac{k}{k-1}}$
$1.0836=\left(\mathrm{M}^{2} \frac{1.4-1}{2}+1\right)^{\frac{1.4}{1.4-1}}=\left(0.2 \mathrm{M}^{2}+1\right)^{3.5}$
$1.0232=0.2 \mathrm{M}^{2}+1 \quad \mathrm{M}=0.3407=\mathrm{v} / \mathrm{a} \quad \mathrm{v}=109.2 \mathrm{~m} / \mathrm{s}$
4. An air compressor delivers air with a stagnation temperature 5 K above the ambient temperature. Determine the velocity of the air. (Answer $100.2 \mathrm{~m} / \mathrm{s}$ )
$\frac{\Delta \mathrm{T}}{\mathrm{T}_{1}}=\frac{\mathrm{v}_{1}^{2}(\mathrm{k}-1)}{2 \gamma \mathrm{RT}_{1}} \quad \Delta \mathrm{~T}=\frac{\mathrm{v}_{1}^{2}(1.4-1)}{2 \times 1.4 \times 287}=5 \mathrm{~K} \quad \mathrm{v}_{1}=100.2 \mathrm{~m} / \mathrm{s}$

## SELF ASSESSMENT EXERCISE No. 3

1. A Venturi Meter must pass $300 \mathrm{~g} / \mathrm{s}$ of air. The inlet pressure is 2 bar and the inlet temperature is $120^{\circ} \mathrm{C}$. Ignoring the inlet velocity, determine the throat area. Take $\mathrm{C}_{\mathrm{d}}$ as 0.97 .
Take $\gamma=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ (assume choked flow)
$m=C_{d} A_{2} \sqrt{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}} \quad \quad \mathrm{r}_{\mathrm{c}}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=\left(\frac{2}{2.4}\right)^{3.5}=0.528$
$\rho_{1}=\mathrm{p}_{1} / \mathrm{RT}_{1}=2 \times 10^{5} /(287 \times 393)=1.773 \mathrm{~kg} / \mathrm{m}^{3}$
$0.3=0.97 \mathrm{~A}_{2} \sqrt{7 \times 2 \times 10^{5} \times 1.773\left\{(0.528)^{1.428}-(0.528)^{1.714}\right\}}=0.97 \mathrm{~A}_{2} \sqrt{166307}$
$\mathrm{A}_{2}=758 \times 10^{-6} \mathrm{~m}^{2}$ and the diameter $=31.07 \mathrm{~mm}$
2. Repeat problem 1 given that the inlet is 60 mm diameter and the inlet velocity must not be neglected.
$\begin{array}{ll}\mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{A}_{2} \sqrt{\frac{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{P}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}}{1-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}\left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)^{2 / \gamma}}} & 0.3=\mathrm{C}_{\mathrm{d}} \mathrm{A}_{2} \sqrt{\frac{166307}{1-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}(0.4)}} \\ 1-\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right)^{2} \times 0.4=1738882 \mathrm{~A}_{2}{ }^{2} & \mathrm{~A}_{1}{ }^{2}=\left(\pi \times 0.06^{2} / 4\right)^{2}=7.99 \times 10^{-6} \mathrm{~m}^{2} \\ 1-50062 \mathrm{~A}_{2}{ }^{2}=1738882 \mathrm{~A}_{2}{ }^{2} & \mathrm{~A}_{2}{ }^{2}=559 \times 10^{-9} \quad \mathrm{~A}_{2}=747.6 \times 10^{-6} \mathrm{~m}^{2}\end{array}$
The diameter is 30.8 mm . Neglecting the inlet velocity made very little difference.
3. A nozzle must pass $0.5 \mathrm{~kg} / \mathrm{s}$ of steam with inlet conditions of 10 bar and $400{ }^{\circ} \mathrm{C}$. Calculate the throat diameter that causes choking at this condition. The density of the steam at inlet is 3.263 $\mathrm{kg} / \mathrm{m}^{3}$. Take $\gamma$ for steam as 1.3 and $\mathrm{C}_{\mathrm{d}}$ as 0.98 .

$$
\begin{aligned}
& \mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{~A}_{2} \sqrt{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}} \quad \mathrm{r}_{\mathrm{c}}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=\left(\frac{2}{2.3}\right)^{4.33}=0.5457 \\
& 0.5=0.98 \mathrm{~A}_{2} \sqrt{8.667 \times 3.2626 \times 10 \times 10^{5}\left\{(0.5457)^{1.538}-(0.5457)^{1.538}\right\}}=0.98 \mathrm{~A}_{2} \sqrt{1.4526 \times 10^{6}}
\end{aligned}
$$

$\mathrm{A}_{2}=423 \times 10^{-6} \mathrm{~m}^{2}$ and the diameter $=23.2 \mathrm{~mm}$
4. A Venturi Meter has a throat area of $500 \mathrm{~mm}^{2}$. Steam flows through it, and the inlet pressure is 7 bar and the throat pressure is 5 bar. The inlet temperature is $400^{\circ} \mathrm{C}$. Calculate the flow rate. The density of the steam at inlet is $2.274 \mathrm{~kg} / \mathrm{m}^{3}$. Take $\gamma=1.3 . \mathrm{R}=462 \mathrm{~J} / \mathrm{kg} \mathrm{K} . \mathrm{C}_{\mathrm{d}}=0.97$.
From the steam tables $\mathrm{v}_{1}=0.4397 \mathrm{~m}^{3} / \mathrm{kg}$ so $\rho_{1}=1 / 0.4397=2.274 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{~A}_{2} \sqrt{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}} \\
& \mathrm{m}=0.97 \times 500 \times 10^{-6} \sqrt{\left[\frac{2 \times 1.3}{1.3-1}\right] 7 \times 10^{5} \times 2.274\left\{(5 / 7)^{1.538}-(5 / 7)^{1.764}\right\}} \\
& \mathrm{m}=485 \times 10^{-6} \times 783 \quad \mathrm{~m}=0.379 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

5. A pitot tube is pointed into an air stream which has an ambient pressure of 100 kPa and temperature of $20^{\circ} \mathrm{C}$. The pressure rise measured is 23 kPa . Calculate the air velocity. Take $\gamma=$ 1.4 and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{123}{100}=1.23=\left(\mathrm{M}^{2} \frac{\gamma-1}{2}+1\right)^{\frac{\gamma}{\gamma-1}} \quad 1.23=\left(0.2 \mathrm{M}^{2}+1\right)^{3.5}$
$1.0609=0.2 \mathrm{M}^{2}+1 \quad 0.0609=0.2 \mathrm{M}^{2} \quad \mathrm{M} 0.5519$
$\mathrm{a}=\gamma \mathrm{RT}^{1 / 2}=(1.4 \times 287 \times 293)^{1 / 2}=343.1 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=0.5519 \times 343.1=189.4 \mathrm{~m} / \mathrm{s}$
6. A fast moving stream of gas has a temperature of $25^{\circ} \mathrm{C}$. A thermometer is placed into it in front of a small barrier to record the stagnation temperature. The stagnation temperature is $28{ }^{\circ} \mathrm{C}$. Calculate the velocity of the gas. Take $\gamma=1.5$ and $\mathrm{R}=300 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. (Answer $73.5 \mathrm{~m} / \mathrm{s}$ )
$\Delta \mathrm{T}=3 \mathrm{~K} \quad \Delta \mathrm{~T} / \mathrm{T}_{1}=\mathrm{v}^{2} / \gamma \mathrm{RT} \quad \mathrm{c}_{\mathrm{p}}=\gamma \mathrm{R} /(\gamma-1)$
$\Delta \mathrm{T}=3=\mathrm{v}^{2} / 2 \mathrm{C}_{\mathrm{p}}=\mathrm{v}^{2}(\gamma-1) /(2 \gamma \mathrm{R})=\mathrm{v}^{2}(1.5-1) /(2 \times 1.5 \times 300)$
$\mathrm{v}^{2}=5400 \quad \mathrm{v}=73.48 \mathrm{~m} / \mathrm{s}$
