FLUID MECHANICS D203

SAE SOLUTIONS TUTORIAL 8B - CENTRIFUGAL PUMPS

SELF ASSESSMENT EXERCISE No. 1

1. A centrifugal pump must produce a head of 15 m with a flow rate of $40 \mathrm{dm} 3 / \mathrm{s}$ and shaft speed of $725 \mathrm{rev} / \mathrm{min}$. The pump must be geometrically similar to either pump A or pump B whose characteristics are shown in the table below.

Which of the two designs will give the highest efficiency and what impeller diameter should be used?

Pump A	$\mathrm{D}=0.25 \mathrm{~m}$	$\mathrm{~N}=1$			
		000	$\mathrm{rev} / \mathrm{min}$		
$\mathrm{Q}\left(\mathrm{dm}^{3} / \mathrm{s}\right)$	8	11	15	19	
$\mathrm{H}(\mathrm{m})$		8.1	7.9	7.3	6.1
$\mathrm{Y} \%$	48	55	62	56	

Pump B D $=0.55 \mathrm{~m} \quad \mathrm{~N}=900 \mathrm{rev} / \mathrm{min}$

$\mathrm{Q}(\mathrm{dm} 3 / \mathrm{s})$	6	8	9	11	
$\mathrm{H}(\mathrm{m})$		42	36	33	27
$\eta \%$	55	65	66	58	

$\mathrm{Ns}=\frac{\mathrm{NQ}^{1 / 2}}{\mathrm{H}^{3 / 4}}=\frac{725 \times 0.04^{1 / 2}}{15^{3 / 4}}=19$
PUMP A

$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	0.008	0.011	
$\mathrm{H}(\mathrm{m})$	8.1	7.9	
$\underline{\eta} \%$	48	55	
Ns	18.6	22.26	
$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	0.06	0.008	0.009
$\mathrm{H}(\mathrm{m})$	42	36	33
$\underline{\eta} \%$	55	65	66
Ns	13.36	17.32	19.6

Pump B gives the greater efficiency when Ns = 19
Drawing a graph or interpolating we find $\mathrm{Q}=0.085 \mathrm{~m} 3 / \mathrm{s} \mathrm{H}=34.5 \mathrm{~m}, \eta=65.5 \%$ when $\mathrm{Ns}=19$

$$
\frac{\mathrm{Q}_{1}}{\mathrm{~N}_{1} \mathrm{D}_{1}^{3}}=\frac{\mathrm{Q}_{2}}{\mathrm{~N}_{2} \mathrm{D}_{2}^{3}} \quad \frac{0.04}{725 \mathrm{D}_{1}^{3}}=\frac{0.085}{900 \times 0.55^{3}} \quad \mathrm{D}=0.46 \mathrm{~m}
$$

or using the head coefficient

$$
\frac{\Delta \mathrm{H}_{1}}{\mathrm{~N}_{1}^{2} \mathrm{D}_{1}^{2}}=\frac{\Delta \mathrm{H}_{2}}{\mathrm{~N}_{2}^{2} \mathrm{D}_{2}^{2}} \quad \frac{0.15}{725^{2} \mathrm{D}_{1}^{2}}=\frac{34.5}{19002^{2} \times 0.55^{2}} \quad \mathrm{D}=0.45 \mathrm{~m}
$$

Take the mean $\mathrm{D}=0.455 \mathrm{~m}$ for the new pump
To commence pumping $\sqrt{2 \mathrm{gH}}=\pi \mathrm{ND} / 60 \quad \mathrm{D}=\frac{60 \sqrt{2 \mathrm{~g} \mathrm{x} 15}}{\pi \times 725}$
Hence $\mathrm{D}=0.452 \mathrm{~m} \quad$ This seems to give the right answer more simply.
2. Define the Head and flow Coefficients for a pump.

Oil is pumped through a pipe 750 m long and 0.15 bore diameter. The outlet is 4 m below the oil level in the supply tank. The pump has an impeller diameter of 508 mm which runs at $600 \mathrm{rev} / \mathrm{min}$. Calculate the flow rate of oil and the power consumed by the pump. It may be assumed $\mathrm{C}_{\mathrm{f}}=0.079(\mathrm{Re})^{-0.25}$. The density of the oil is $950 \mathrm{~kg} / \mathrm{m}^{3}$ and the dynamic viscosity is $5 \times 10^{-3} \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}$. The data for a geometrically similar pump is shown below. $\mathrm{D}=0.552 \mathrm{~m} \mathrm{~N}=900 \mathrm{rev} / \mathrm{min}$

$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{min}\right)$	0	1.14	2.27	3.41	4.55	5.68	6.86
$\mathrm{H}(\mathrm{m})$	34.1	37.2	39.9	40.5	38.1	32.9	25.9
$\mathrm{\eta} \%$	0	22	41	56	67	72	65

$\Delta \mathrm{H}=$ Head Added to the system by the pump. This may be put into Bernoulli's equation.
$\mathrm{h}_{\mathrm{A}}+\mathrm{z}_{\mathrm{A}}+\mathrm{u}_{\mathrm{A}}^{2} / 2 \mathrm{~g}+\Delta \mathrm{H}=\mathrm{h}_{\mathrm{B}}+\mathrm{z}_{\mathrm{B}}+\mathrm{u}_{\mathrm{B}}^{2} / 2 \mathrm{~g}+\mathrm{h}_{\mathrm{L}}$
$0+4+0+\Delta \mathrm{H}=0+0+\mathrm{u}_{\mathrm{B}}{ }^{2} / 2 \mathrm{~g}+\mathrm{h}_{\mathrm{L}}$
$4+\Delta \mathrm{H}=\mathrm{u}_{\mathrm{B}}^{2} / 2 \mathrm{~g}+\mathrm{h}_{\mathrm{L}}$
$\mathrm{u}_{\mathrm{B}}=\mathrm{Q} / \mathrm{A}=\mathrm{Q} /\left(\pi \times 0.075^{2}\right)=56.588 \mathrm{Q}$
$\mathrm{h}_{\mathrm{L}}=4 \mathrm{C}_{\mathrm{f}} \mathrm{Lu}^{2} / 2 \mathrm{gD} \quad \mathrm{R}_{\mathrm{e}}=\rho u \mathrm{D} / \mu=950 \mathrm{x}$
(56.588 Q) $0.15 / 0.005=1612758 \mathrm{Q}$
$\mathrm{C}_{\mathrm{f}}=0.079 \mathrm{R}_{\mathrm{e}}^{-0.25}=0.079(1612758 \mathrm{Q})^{-0.25}=$

$0.002217 \mathrm{Q}^{-0.25}$
$\mathrm{h}_{\mathrm{L}}=4\left(0.002217 \mathrm{Q}^{-0.25}\right) \times 750(56.588 \mathrm{Q})^{2} /(2 \mathrm{~g} \times 0.15)=7236 \mathrm{Q}^{1.75}$
$4+\Delta \mathrm{H}=(56.588 \mathrm{Q})^{2} / 2 \mathrm{~g}+7236 \mathrm{Q}^{1.75}$
$\Delta H=163.2 Q^{2}+7236 Q^{1.75}-4$
If Q is given in $\mathrm{m}^{3} / \mathrm{min}$ this becomes
$\Delta \mathrm{H}=0.0453 \mathrm{Q}^{2}+5.594 \mathrm{Q}^{1.75}-4 \quad$ ow create a table for the system.

$\mathrm{Q}(\mathrm{m} 3 / \mathrm{min})$	0	1	2	3	4	5
$\Delta \mathrm{H}(\mathrm{m})$	-4	1.64	15	34.7	60	90.6

Now compile a table for a similar pump using $Q_{2}=\frac{N_{2} D_{2}^{3} Q_{1}}{N_{1} D_{1}^{3}} \quad \Delta H_{2}=\frac{N_{2}^{2} D_{2}^{2} \Delta H_{1}}{N_{1}^{2} D_{1}^{2}}$
$\mathrm{N}_{2}=600 \mathrm{D}_{2}=508 \quad \mathrm{~N}_{1}=900 \quad \mathrm{D}_{1}=552$ produces $\mathrm{Q}_{2}=0.52 \mathrm{Q}_{1} \quad \Delta \mathrm{H}_{2}=0.38 \Delta .{ }_{1}$

$\mathrm{Q}_{1}\left(\mathrm{~m}^{3} / \mathrm{min}\right)$	0	1.14	2.27	3.41	4.55	5.68	6.86
$\Delta \mathrm{H}_{1}(\mathrm{~m})$	34.1	37.2	39.9	40.5	38.1	32.9	25.9
$\eta \%$	0	22	41	56	67	72	65
$\mathrm{Q}_{2}\left(\mathrm{~m}^{3} / \mathrm{min}\right)$	0	0.59	1.18	1.8	2.4	2.9	3,6
$\Delta \mathrm{H}_{1}(\mathrm{~m})$	12.83	14	15	15.2	14.3	12.4	9.8

Plotting $\Delta \mathrm{H}$ for the system against Q and η produces a matching point $\Delta \mathrm{H}=15 \mathrm{~m}$ $\mathrm{Q}=2\left(\mathrm{~m}^{3} / \mathrm{min}\right)$ and $\eta=59 \%$
$\mathrm{P}=\mathrm{mg} \Delta \mathrm{H} / \eta=2 \times(950 / 60)$ x 9.81 x 15/0.59 = 7.89 kW

SELF ASSESSMENT EXERCISE No. 2

1. The rotor of a centrifugal pump is 100 mm diameter and runs at $1450 \mathrm{rev} / \mathrm{min}$. It is 10 mm deep at the outer edge and swept back at 300 . The inlet flow is radial. the vanes take up 10% of the outlet area. 25% of the outlet velocity head is lost in the volute chamber. Estimate the shut off head and developed head when $8 \mathrm{dm} 3 / \mathrm{s}$ is pumped. (5.87 m and 1.89 m)
$\mathrm{v}_{\mathrm{R} 2}=\mathrm{Q} / \mathrm{A}_{2}$
$=0.008 /(\pi \times 0.1 \times 0.01 \times 0.9)=2.829 \mathrm{~m} / \mathrm{s}$

OUTLET

$\mathrm{u}_{2}=\pi \mathrm{ND}_{2}$
$=\pi \times(450 / 60) \times 0.1=7.592 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{w} 2}=7.592-2.829 / \tan 30^{\circ}=2.692 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{2}=\left(2.692^{2}+2.829^{2}\right)^{1 / 2}=3.905 \mathrm{~m} / \mathrm{s}$
Kinetic Head $=\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}$
$=3.905^{2} / 2 \mathrm{~g}=0.777 \mathrm{~m}$
Loss in chamber $=25 \% \times 0.777=0.194 \mathrm{~m}$

Manometric Head $=\mathrm{u}_{2} \mathrm{v}_{\mathrm{w} 2} / \mathrm{g}$
$=7.592 \times 2.692 / 9.81=2.08 \mathrm{~m}$
Developed Head $=2.08-0.194=1.89 \mathrm{~m}$
$\Delta \mathrm{h}=\mathrm{u}_{2} \mathrm{~V}_{\mathrm{w} 2} / \mathrm{g}=\left(\mathrm{u}_{2}-\mathrm{Q} / \mathrm{A}_{2} \tan \alpha_{2}\right)$
When there is no flow $\mathrm{Q}=0$ so $\Delta \mathrm{h}=\mathrm{u}_{2} \mathrm{v}_{\mathrm{w} 2} / \mathrm{g}-\mathrm{u}_{2}=(7.592 / 9.81) \times 7.592=5.875 \mathrm{~m}$
2. The rotor of a centrifugal pump is 170 mm diameter and runs at $1450 \mathrm{rev} / \mathrm{min}$. It is 15 mm deep at the outer edge and swept back at 300 . The inlet flow is radial. the vanes take up 10% of the outlet area. 65% of the outlet velocity head is lost in the volute chamber. The pump delivers 15 $\mathrm{dm} 3 / \mathrm{s}$ of water.

Calculate
i. The head produced. (9.23 m)
ii. The efficiency. (75.4\%)
iii. The power consumed. (1.8 kW)
$\mathrm{u}_{2}=\pi \mathrm{ND}_{2}=\pi \mathrm{x}(1450 / 60) \times 0.17=12.906 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{R} 2}=\mathrm{Q} / \mathrm{A}_{2}$
$\mathrm{V}_{\mathrm{R} 2}=0.015 /(\pi \times 0.17 \times 0.015 \times 0.9)=2.08 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{w} 1}=0$

OUTLET

$\mathrm{v}_{\mathrm{w} 2}=12.906-2.08 / \tan 30^{\circ}=9.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{2}=\left(9.3^{2}+2.08^{2}\right)^{1 / 2}=9.53 \mathrm{~m} / \mathrm{s}$
Kinetic Head $=\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}=9.53^{2} / 2 \mathrm{~g}=4.628 \mathrm{~m}$
Head Recovered $=35 \%$ x $4.628=1.62 \mathrm{~m}$
Head Loss $=3 \mathrm{~m}$
Manometric Head $=\mathrm{u}_{2} \mathrm{~V}_{\mathrm{w} 2} / \mathrm{g}$
$=12.906 \times 9.3 / 9.81=12.23 \mathrm{~m}$

Developed Head $12.23-3=9.23 \mathrm{~m}$
$\eta_{\text {man }}=9.23 / 12.23=75.3 \%$
$\mathrm{DP}=\mathrm{m} \mathrm{u}_{2} \mathrm{v}_{\mathrm{w} 2}=15 \times 12.906 \times 9.3=1.8 \mathrm{~kW}$
$\mathrm{WP}=\mathrm{mg} \Delta \mathrm{h}=15 \times 9.81 \times 9.23=1.358 \mathrm{~kW}$
$\eta=1.358 / 1.8=75.4 \%$

