FLUID MECHANICS D203

SAE SOLUTIONS TUTORIAL 3 - BOUNDARY LAYERS

SELF ASSESSMENT EXERCISE 1

1. A smooth thin plate 5 m long and 1 m wide is placed in an air stream moving at $3 \mathrm{~m} / \mathrm{s}$ with its length parallel with the flow. Calculate the drag force on each side of the plate. The density of the air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and the kinematic viscosity is $1.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.
$\mathrm{R}_{\mathrm{ex}}=\mathrm{uL} / v=3 \times 5 / 1.6 \times 10^{-5}=937.5 \times 10^{3}$
$C_{D F}=0.074 \mathrm{R}_{\mathrm{ex}}{ }^{-1 / 5}=4.729 \times 10^{-3}$
Dynamic Pressure $=\rho \mathrm{u}_{0}{ }^{2} / 2=1.2 \times 3^{2} / 2=5.4 \mathrm{~Pa}$
$\tau_{\mathrm{w}}=\mathrm{C}_{\mathrm{DF}} \mathrm{X}$ dyn press $=0.0255 \mathrm{~Pa}$
$\mathrm{R}=\tau_{\mathrm{w}} \mathrm{x} \mathrm{A}=0.0255 \times 5=0.128 \mathrm{~N}$
2. A pipe bore diameter D and length L has fully developed laminar flow throughout the entire length with a centre line velocity u_{0}. Given that the drag coefficient is given as $\mathrm{C}_{\mathrm{Df}}=16 / \mathrm{Re}$ where $\operatorname{Re}=\frac{\rho u_{0} \mathrm{D}}{\mu}$, show that the drag force on the inside of the pipe is given as $\mathrm{R}=8 \pi \mu \mathrm{u}_{0} \mathrm{~L}$ and hence the pressure loss in the pipe due to skin friction is
$\mathrm{p}_{\mathrm{L}}=32 \mu \mathrm{u}_{0} \mathrm{~L} / \mathrm{D}^{2}$
$C_{D F}=16 / R_{e}$
$\mathrm{R}=\tau_{\mathrm{w}} \mathrm{x} \rho \mathrm{u}_{0}{ }^{2} / 2=\mathrm{C}_{\mathrm{DF}} \mathrm{X}\left(\rho \mathrm{u}_{0}{ }^{2} / 2\right) \times \mathrm{A}$
$R=\left(16 / R_{e}\right)\left(\rho u_{0}{ }^{2} / 2\right) A$
$\mathrm{R}=\left(16 \mu / \rho \mathrm{u}_{0} \mathrm{D}\right)\left(\rho \mathrm{u}_{0}{ }^{2} / 2\right) \pi \mathrm{DL}$
$\mathrm{R}=\left(16 \mu \mathrm{u}_{0} \pi \mathrm{~L} / 2\right)=8 \pi \mu \mathrm{u}_{0} \mathrm{~L}$
$\mathrm{p}_{\mathrm{L}}=\mathrm{R} / \mathrm{A}=8 \pi \mu \mathrm{u}_{0} \mathrm{~L} /\left(\pi \mathrm{D}^{2} / 4\right)=32 \mu \mathrm{u}_{0} \mathrm{~L} / \mathrm{D}^{2}$

SELF ASSESSMENT EXERCISE No. 2

1. Calculate the drag force for a cylindrical chimney 0.9 m diameter and 50 m tall in a wind blowing at $30 \mathrm{~m} / \mathrm{s}$ given that the drag coefficient is 0.8 .
The density of the air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
$C_{D}=0.8=2 R /\left(\rho u^{2} A\right) \quad R=0.8\left(\rho u^{2} / 2\right) A=0.8\left(1.2 \times 30^{2} / 2\right)(50 \times 0.9)=19440 \mathrm{~N}$

2 Using the graph (fig.1.12) to find the drag coefficient, determine the drag force per metre length acting on an overhead power line 30 mm diameter when the wind blows at $8 \mathrm{~m} / \mathrm{s}$. The density of air may be taken as $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ and the kinematic viscosity as $1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} .(1.8 \mathrm{~N})$.
$\mathrm{R}_{\mathrm{e}}=\mathrm{ud} / v=8 \times 0.03 / 1.5 \times 10^{-5}=16 \times 10^{3}$
From the graph
$C_{D}=1.5$
$R=C_{D}\left(\rho u_{0}{ }^{2} / 2\right) A=1.5\left(1.25 \times 8^{2} / 2\right)(0.03 \times 1)=1.8 \mathrm{~N}$

SELF ASSESSMENT EXERCISE No. 3

1. a. Explain the term Stokes flow and terminal velocity.
b. Show that the terminal velocity of a spherical particle with Stokes flow is given by the formulae $=d^{2} g\left(\rho_{s}-\rho_{f}\right) / 18 \mu$. Go on to show that $C_{D}=24 / R_{e}$

Stokes flow -for ideal fluid - no separation - $\operatorname{Re}<0.2$
$R=$ Buoyant weight $=\left(\pi d^{3} / 6\right) g\left(\rho_{s}-\rho_{f}\right)=3 \pi d \mu u_{t}$
$\mathrm{u}_{\mathrm{t}}=\mathrm{d}^{2} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right) / 18 \mu$
$R=C_{D}\left(\rho u_{t}^{2} / 2\right)\left(\pi d^{2} / 4\right)$

$$
C_{D}=26 \mu /\left(\rho u_{t} d\right)=24 / R_{e}
$$

2. Calculate the largest diameter sphere that can be lifted upwards by a vertical flow of water moving at $1 \mathrm{~m} / \mathrm{s}$. The sphere is made of glass with a density of $2630 \mathrm{~kg} / \mathrm{m}^{3}$. The water has a density of $998 \mathrm{~kg} / \mathrm{m}^{3}$ and a dynamic viscosity of 1 cP .
$C_{D}=\left(2 / \rho u^{2} A\right) R=\left\{(2 \mathrm{x} 4) /\left(\rho u^{2} \pi d^{2}\right)\right\}\left(\pi d^{3} / 6\right) g\left(\rho_{s}-\rho_{f}\right)=21.38 d$
Try Newton Flow first
$\mathrm{D}=0.44 / 21.38=0.206 \mathrm{~m} \quad \mathrm{R}_{\mathrm{e}}=(998 \times 1 \times 0.0206) / 0.001=20530$ therefore this is valid.
3. Using the same data for the sphere and water as in Q2, calculate the diameter of the largest sphere that can be lifted upwards by a vertical flow of water moving at $0.5 \mathrm{~m} / \mathrm{s}$. (5.95 mm).
$C_{D}=85.52 \mathrm{~d}$
Try Newton Flow
$\mathrm{D}=0.44 / 85.52=0.0051 \mathrm{R}_{\mathrm{e}}=(998 \times 0.5 \times 0.0051) / 0.001=2567$ therefore this is valid.
4. Using the graph (fig. 1.12) to obtain the drag coefficient of a sphere, determine the drag on a totally immersed sphere 0.2 m diameter moving at $0.3 \mathrm{~m} / \mathrm{s}$ in sea water. The density of the water is $1025 \mathrm{~kg} / \mathrm{m}^{3}$ and the dynamic viscosity is $1.05 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$.
$\mathrm{R}_{\mathrm{e}}=(\rho \mathrm{ud} / \mu)=\left(1025 \times 0.3 \times 0.2 / 1.05 \times 10^{-3}\right)=58.57 \times 10^{3}$ From the graph $\mathrm{C}_{\mathrm{D}}=0.45$
$\mathrm{R}=\mathrm{C}_{\mathrm{D}}\left(\rho \mathrm{u}^{2} / 2\right) \mathrm{A}=0.45\left(1025 \times 0.3^{2} / 2\right)\left(\pi \times 0.2^{2} / 4\right)=0.65 \mathrm{~N}$
5. A glass sphere of diameter 1.5 mm and density $2500 \mathrm{~kg} / \mathrm{m}^{3}$ is allowed to fall through water under the action of gravity. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the dynamic viscosity is 1 cP .
Calculate the terminal velocity assuming the drag coefficient is $C_{D}=24 R^{-1}\left(1+0.15 R^{0.687}\right)$
$C_{D}=F /($ Area x Dynamic Pressure)
$\mathrm{R}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{6} \quad \mathrm{C}_{\mathrm{D}}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{\left(\pi \mathrm{d}^{2} / 4\right)\left(\rho \mathrm{u}^{2} / 2\right)} \quad \mathrm{C}_{\mathrm{D}}=\frac{4 \mathrm{~d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{3 \rho_{\mathrm{f}} \mathrm{u}^{2} \mathrm{~d}^{2}}$
Arrange the formula into the form $\mathrm{C}_{\mathrm{D}} \mathrm{R}_{\mathrm{e}}{ }^{2}$ as follows.
$C_{D}=\frac{4 d^{3} g\left(\rho_{s}-\rho_{f}\right)}{3 \rho_{f} u^{2} d^{2}} \times \frac{\rho_{f} \mu^{2}}{\rho_{f} \mu^{2}}=\frac{4 d^{3} g\left(\rho_{s}-\rho_{f}\right) \rho_{f}}{3 \mu^{2}} \times \frac{\mu^{2}}{\rho_{f}^{2} u^{2} d^{2}}=\frac{4 d^{3} g\left(\rho_{s}-\rho_{f}\right) \rho_{f}}{3 \mu^{2}} \times \frac{1}{R_{e}^{2}}$
$C_{D} R_{e}^{2}=\frac{4 d^{3} g\left(\rho_{s}-\rho_{f}\right) \rho_{f}}{3 \mu^{2}}$ and evaluating this we
get 66217
From $C_{D}=\frac{24}{R_{e}}\left[1+0.15 R_{e}{ }^{0.687}\right]$ we may solve by plotting $\mathrm{C}_{\mathrm{D}} \mathrm{Re}^{2}$ against Re
From the graph $\mathrm{R}_{\mathrm{e}}=320$ hence
$\mathrm{u}=\mathrm{R}_{\mathrm{e}} \mu / \mathrm{\rho d}=0.215 \mathrm{~m} / \mathrm{s}$

6. A glass sphere of density $2690 \mathrm{~kg} / \mathrm{m}^{3}$ falls freely through water. Find the terminal velocity for a 4 mm diameter sphere and a 0.4 mm diameter sphere. The drag coefficient is

$$
C D=8 F /\left\{\pi d^{2} \rho u^{2}\right\}
$$

This coefficient is related to the Reynolds number as shown for low values of R_{e}.

Re	15	20	25	30	35
C_{D}	3.14	2.61	2.33	2.04	1.87

The density and viscosity of the water is $997 \mathrm{~kg} / \mathrm{m}^{3}$ and $0.89 \times 10-3 \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}$.
For Re $>1000 C_{D}=0.44$
For a 4 mm sphere we might guess from the question that R_{e} is greater than 1000 and hence $C_{D}=0.44$

$$
\begin{aligned}
\mathrm{R} & =\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{6} \quad \mathrm{C}_{\mathrm{D}}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{\left(\pi \mathrm{d}^{2} / 4\right)\left(\rho \mathrm{u}^{2} / 2\right)} \quad \mathrm{C}_{\mathrm{D}}=\frac{4 \mathrm{~d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{3 \rho_{\mathrm{f}} \mathrm{u}^{2} \mathrm{~d}^{2}} \\
\mathrm{u} & =\sqrt{\frac{4 \mathrm{~d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{3 \rho_{\mathrm{f}} \mathrm{C}_{\mathrm{D}} \mathrm{~d}^{2}}} \text { Putting in values } \rho=997
\end{aligned} \quad \mu=0.0089 \quad \mathrm{~d}=0.004 \quad \mathrm{C}_{\mathrm{D}}=0.44 .
$$

$u=0.45 \mathrm{~m} / \mathrm{s}$ Check $\mathrm{R}_{\mathrm{e}}=\rho u \mathrm{~d} / \mu=2013$ so this is valid
For the 0.4 mm sphere we might guess from the question that $\mathrm{C}_{\mathrm{D}}=\frac{8 \mathrm{~F}}{\pi \mathrm{~d}^{2} \rho \mathrm{u}^{2}}$
$C_{D}=\frac{8 F}{\pi d^{2} \rho u^{2}} \times \frac{\rho \mu^{2}}{\rho \mu^{2}}=\frac{8 F \rho}{\pi \mu^{2}} \times \frac{\mu^{2}}{\rho^{2} u^{2} d^{2}}=\frac{8 F \rho}{\pi \mu^{2}} \times \frac{1}{R_{e}^{2}}$
$\mathrm{C}_{\mathrm{D}} \mathrm{R}_{\mathrm{e}}^{2}=\frac{8 \mathrm{~F} \rho}{\pi \mu^{2}}=3.205 \times 10^{9} \mathrm{~F}$
$\mathrm{R}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{6}$ (The buoyant weight)
For a 0.4 mm sphere $\mathrm{F}=556.55 \times 10^{-9} \mathrm{~N}$
$C_{D} R_{e}^{2}=3.205 \times 10^{9} \mathrm{~F}=1784$
Plot graph for the 0.4 mm sphere
The 0.4 mm sphere fits the table

$\mathrm{u}=\mathrm{R}_{\mathrm{e}} \mu / \mathrm{\rho d}=0.066 \mathrm{~m} / \mathrm{s}$
7. A glass sphere of diameter 1.5 mm and density $2500 \mathrm{~kg} / \mathrm{m}^{3}$ is allowed to fall through water under the action of gravity. Find the terminal velocity assuming the drag coefficient is
$C_{D}=24 R_{e}-1\left(1+0.15 R^{0}{ }^{0.687}\right)$
$\mathrm{R}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{6}$ (The buoyant weight)
$\mathrm{R}=\frac{\pi \times 0.0015^{3} \times 9.81(2500-997)}{6}=26.056 \times 10^{-6} \mathrm{~N}$
$\mathrm{C}_{\mathrm{D}}=\frac{8 \mathrm{~F}}{\pi \mathrm{~d}^{2} \rho \mathrm{u}^{2}}=\frac{8 \times 26 \times 10^{-6}}{\pi(0.0015)^{2} \times 997 \times \mathrm{u}^{2}}=\frac{29.578 \times 10^{3}}{\mathrm{u}^{2}}$
$\mathrm{C}_{\mathrm{D}}=\frac{29.578 \times 10^{3}}{\mathrm{u}^{2}}=\frac{24}{\mathrm{R}_{\mathrm{e}}}\left[1+0.15 \mathrm{R}_{\mathrm{e}}^{0.687}\right]$
$\frac{29.578 \times 10^{3}}{\mathrm{u}^{2}}=\frac{24 \times 0.00089}{997 \mathrm{u}(0.0015)}\left[1+0.15\left(\frac{997 \mathrm{u}(0.0015)}{0.00089}\right)^{0.687}\right]$
$2.0709=u\left[1+24.657 u^{0.687}\right]=u+24.657 u^{1.687}$
Solve for u and $\mathrm{u}=0.215 \mathrm{~m} / \mathrm{s}$ (plotting might be the best way)

