## FLUID MECHANICS D203

SAE SOLUTIONS TUTORIAL 1 - FLUID FLOW THEORY

## S.A.E. No. 1

1. Describe the principle of operation of the following types of viscometers.
a. Redwood Viscometers.
b. British Standard 188 glass U tube viscometer.
c. British Standard 188 Falling Sphere Viscometer.
d. Any form of Rotational Viscometer

The solutions are contained in part 1 of the tutorial.

## S.A.E. No. 2

1. Oil flows in a pipe 80 mm bore diameter with a mean velocity of $0.4 \mathrm{~m} / \mathrm{s}$. The density is $890 \mathrm{~kg} / \mathrm{m}^{3}$ and the viscosity is $0.075 \mathrm{Ns} / \mathrm{m}^{2}$. Show that the flow is laminar and hence deduce the pressure loss per metre length.
$\mathrm{R}_{\mathrm{e}}=\frac{\rho \mathrm{ud}}{\mu}=\frac{890 \times 0.4 \times 0.08}{0.075}=379.7$
Since this is less than 2000 flow is laminar so Poiseuille's equation applies.
$\Delta \mathrm{p}=\frac{32 \mu 2 \mu}{\mathrm{~d}^{2}}=\frac{32 \times 0.075 \times 1 \times 0.4}{0.08^{2}}=150 \mathrm{~Pa}$
2. Oil flows in a pipe 100 mm bore diameter with a Reynolds' Number of 500 . The density is 800 $\mathrm{kg} / \mathrm{m}^{3}$. Calculate the velocity of a streamline at a radius of 40 mm . The viscosity $\mu=0.08 \mathrm{Ns} / \mathrm{m}^{2}$. $R_{e}=500=\frac{\rho u_{m} d}{\mu}$
$\mathrm{u}_{\mathrm{m}}=\frac{500 \mu}{\rho \mathrm{~d}}=\frac{500 \times 0.08}{800 \times 0.1}=0.5 \mathrm{~m} / \mathrm{s}$
Since $R_{e}$ is less than 2000 flow is laminar so Poiseuille's equation applies.
$\Delta \mathrm{p}=\frac{32 \mu 2 \mu}{\mathrm{~d}^{2}}=\frac{32 \times 0.08 \times \mathrm{L} \times 0.5}{0.1^{2}}=128 \mathrm{~L} \mathrm{~Pa}$
$\mathrm{u}=\frac{\Delta \mathrm{p}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)}{4 \mathrm{~L} \mu}=\frac{128 \mathrm{~L}\left(0.05^{2}-0.04^{2}\right)}{4 \mathrm{~L} \mathrm{x} 0.08}=0.36 \mathrm{~m} / \mathrm{s}$
3. A liquid of dynamic viscosity $5 \times 10-3 \mathrm{Ns} / \mathrm{m}^{2}$ flows through a capillary of diameter 3.0 mm under a pressure gradient of $1800 \mathrm{~N} / \mathrm{m}^{3}$. Evaluate the volumetric flow rate, the mean velocity, the centre line velocity and the radial position at which the velocity is equal to the mean velocity.

$$
\begin{aligned}
& \frac{\Delta \mathrm{P}}{\mathrm{~L}}=1800=\frac{32 \mu \mathrm{u}_{\mathrm{m}}}{\mathrm{~d}^{2}} \quad \mathrm{u}_{\mathrm{m}}=0.10125 \mathrm{~m} / \mathrm{s} \\
& \mathrm{u}_{\max }=2 \mathrm{u}_{\mathrm{m}}=0.2025 \mathrm{~m} / \mathrm{s} \\
& \mathrm{u}=0.10125=\frac{\Delta \mathrm{p}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)}{4 \mathrm{~L} \mu}=\frac{1800\left(0.0015^{2}-\mathrm{r}^{2}\right)}{4 \times 0.005} \quad \mathrm{r}=0.0010107 \mathrm{~m} \text { or } 1.0107 \mathrm{~mm}
\end{aligned}
$$

4. 

a. Explain the term Stokes flow and terminal velocity.
b. Show that a spherical particle with Stokes flow has a terminal velocity given by
$u=d^{2} g\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right) / 18 \mu$
Go on to show that $C_{D}=24 / R_{e}$
c. For spherical particles, a useful empirical formula relating the drag coefficient and the Reynold's number is

$$
\mathrm{C}_{\mathrm{D}}=\frac{24}{\mathrm{R}_{\mathrm{e}}}+\frac{6}{1+\sqrt{\mathrm{R}_{\mathrm{e}}}}+0.4
$$

Given $\rho_{\mathrm{f}}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1 \mathrm{cP}$ and $\rho_{\mathrm{s}}=2630 \mathrm{~kg} / \mathrm{m}^{3}$ determine the maximum size of spherical particles that will be lifted upwards by a vertical stream of water moving at $1 \mathrm{~m} / \mathrm{s}$.
d. If the water velocity is reduced to $0.5 \mathrm{~m} / \mathrm{s}$, show that particles with a diameter of less than 5.95 mm will fall downwards.
a) For $R_{e}<0.2$ the flow is called Stokes flow and Stokes showed that $R=3 \pi d \mu u$ hence
$\mathrm{R}=\mathrm{W}=$ volume x density difference x gravity
$\mathrm{R}=\mathrm{W}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{6}=3 \pi \mathrm{~d} \mu \mathrm{u}$
$\rho_{\mathrm{s}}=$ density of the sphere material $\rho_{\mathrm{f}}=$ density of fluid $\mathrm{d}=$ sphere diameter
$\mathrm{u}=\frac{\pi \mathrm{d}^{3} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{18 \pi \mathrm{~d} \mu}=\frac{\mathrm{d}^{2} \mathrm{~g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)}{18 \mu}$
b) $C_{D}=R /\left(\right.$ projected area $\left.x \rho u^{2} / 2\right) \quad C_{D}=\frac{\pi d^{3} g\left(\rho_{s}-\rho_{f}\right)}{\left(\rho u^{2} / 2\right) 6 \pi d^{2} / 4}=\frac{4 \operatorname{dg}\left(\rho_{s}-\rho_{f}\right)}{3 \rho u^{2}}$
$C_{D}=\frac{4 \times 9.81 \times(1630-998) d}{3 \times 998 \mathrm{xu}^{2}}=21.389 \frac{\mathrm{~d}}{\mathrm{u}^{2}}$
$C_{D}=\frac{24}{R_{e}}+\frac{6}{1+\sqrt{R_{e}}}+0.4=21.389 \frac{\mathrm{~d}}{\mathrm{u}^{2}}$
$21.389 \frac{\mathrm{~d}}{\mathrm{u}^{2}}-\frac{24}{\mathrm{R}_{\mathrm{e}}}-\frac{6}{1+\sqrt{\mathrm{R}_{\mathrm{e}}}}=0.4 \quad$ let $21.389 \frac{\mathrm{~d}}{\mathrm{u}^{2}}-\frac{24}{\mathrm{R}_{\mathrm{e}}}-\frac{6}{1+\sqrt{\mathrm{R}_{\mathrm{e}}}}=\mathrm{x}$
$\operatorname{Re}=\rho u d / \mu=998 \times 1 \times d / 0.89 \times 10^{-3}=1.1213 \times 10^{6} \mathrm{~d}$
Make a table

| D | 0.001 | 0.003 | 0.01 | 0.02 | 0.03 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Re | 1121.3 | 3363.9 | 11213 | 22426 | 33639 |
| x | -0.174 | -0.045 | 0.156 | 0.387 | 0.608 |

Plot and find that when $\mathrm{d}=0.0205 \mathrm{~m}(20.5 \mathrm{~mm}) \mathrm{x}=0.4$

c) $u=0.5 \mathrm{~m} / \mathrm{s} \mathrm{d}=5.95 \mathrm{~mm}$
$\operatorname{Re}=\rho u d / \mu=998 \times 0.5 \times 0.00595 / 0.89 \times 10^{-3}=3336$
$C_{D}=21.389 \frac{\mathrm{~d}}{\mathrm{u}^{2}}=0.509$
$C_{D}=\frac{24}{3336}+\frac{6}{1+\sqrt{3336}}+0.4=0.509$

Since $C_{D}$ is the same, larger ones will fall.
5. Similar to Q5 1998

A simple fluid coupling consists of two parallel round discs of radius R separated by a a gap h. One disc is connected to the input shaft and rotates at $\omega_{1} \mathrm{rad} / \mathrm{s}$. The other disc is connected to the output shaft and rotates at $\omega_{2} \mathrm{rad} / \mathrm{s}$. The discs are separated by oil of dynamic viscosity $\mu$ and it may be assumed that the velocity gradient is linear at all radii.

Show that the Torque at the input shaft is given by $T=\frac{\pi D^{4} \mu\left(\omega_{1}-\omega_{2}\right)}{32 h}$
The input shaft rotates at $900 \mathrm{rev} / \mathrm{min}$ and transmits 500 W of power. Calculate the output speed, torque and power. ( $747 \mathrm{rev} / \mathrm{min}, 5.3 \mathrm{Nm}$ and 414 W )

Show by application of max/min theory that the output
 speed is half the input speed when maximum output power is obtained.

## SOLUTION

Assume the velocity varies linearly from $\mathrm{u}_{1}$ to over the gap at any radius. Gap is $\mathrm{h}=1.2 \mathrm{~mm}$ $\mathrm{T}=\mu \mathrm{du} / \mathrm{dy}=\mu\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right) / \mathrm{h}$
For an elementary ring radius $r$ and width $d r$ shear force is
Force $=\tau \mathrm{dA}=\tau 2 \pi \mathrm{r} \mathrm{dr}$
$\mathrm{dF}=\mu \frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{\mathrm{~h}} \mathrm{x} 2 \pi \mathrm{r} \mathrm{d} r$

$\mathrm{U}_{2}$
the

Torque due to this force is

$$
\mathrm{dT}=\mathrm{rdF}=\mu \frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{\mathrm{~h}} \times 2 \pi \mathrm{r}^{2} \mathrm{dr}
$$

Substitute $u=\omega r$

Integrate

$$
\mathrm{dT}=\mathrm{rdF}=\mu \frac{\left(\omega_{1}-\omega_{2}\right)}{\mathrm{h}} \times 2 \pi \mathrm{r}^{3} \mathrm{dr}
$$

$$
\mathrm{T}=\mu \frac{\left(\omega_{1}-\omega_{2}\right)}{\mathrm{h}} \times 2 \pi \int_{0}^{R} \mathrm{r}^{3} \mathrm{dr}=\mu \frac{\left(\omega_{1}-\omega_{2}\right)}{\mathrm{h}} \times 2 \pi \frac{\mathrm{R}^{4}}{4}
$$

Rearrange and substitute $\mathrm{R}=\mathrm{D} / 2$

$$
T=\mu \frac{\left(\omega_{1}-\omega_{2}\right)}{h} \times \pi \frac{D^{4}}{32}
$$

Put $D=0.3 \mathrm{~m}, \mu=0.5 \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}, \mathrm{~h}=0.012 \mathrm{~m}$

$$
\mathrm{T}=0.5 \frac{\left(\omega_{1}-\omega_{2}\right)}{0.012} \mathrm{x} \pi \frac{0.3^{4}}{32}=0.33\left(\omega_{1}-\omega_{2}\right)
$$

$\mathrm{N}=900 \mathrm{rev} / \mathrm{min} \quad \mathrm{P}=500 \mathrm{~W} \quad$ Power $=2 \pi \mathrm{NT} / 60 \quad \mathrm{~T}=\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}}=\frac{60 \times 500}{2 \pi \times 900}=5.305 \mathrm{Nm}$
The torque input and output must be the same. $\quad \omega_{1}=2 \pi \mathrm{~N}_{1} / 60=94.25 \mathrm{rad} / \mathrm{s}$
$5.305=0.33\left(94.25_{1}-\omega_{2}\right) \quad$ hence $\omega_{2}=78.22 \mathrm{rad} / \mathrm{s}$ and $\mathrm{N}_{2}=747 \mathrm{rev} / \mathrm{min}$
$\mathrm{P}_{2}=2 \pi \mathrm{~N}_{2} \mathrm{~T} / 60=\omega_{2} \mathrm{~T}=78.22 \times 5.305=414 \mathrm{~W}$ (Power out)
For maximum power output $\mathrm{dp}_{2} / \mathrm{d}_{2}=0 \quad \mathrm{P}_{2}=\omega_{2} \mathrm{~T}=0.33\left(\omega_{1} \omega_{2}-\omega_{2}^{2}\right)$
Differentiate $\frac{\mathrm{dP}_{2}}{\mathrm{~d} \omega_{2}}=0.33\left(\omega_{1}-2 \omega_{2}\right)$
Equate to zero and it follows that for maximum power output $\omega_{1}=2 \omega_{2}$
And it follows $\mathrm{N}_{1}=2 \mathrm{~N}_{2}$ so $\mathrm{N}_{2}=450 \mathrm{rev} / \mathrm{min}$
6. Show that for fully developed laminar flow of a fluid of viscosity $\mu$ between horizontal parallel plates a distance $h$ apart, the mean velocity $u_{m}$ is related to the pressure gradient $\mathrm{dp} / \mathrm{dx}$ by $u_{m}=-(h 2 / 12 \mu)(d p / d x)$

A flanged pipe joint of internal diameter $\mathrm{d}_{\mathrm{i}}$ containing viscous fluid of viscosity $\mu$ at gauge pressure p . The flange has an outer diameter $\mathrm{d}_{\mathrm{O}}$ and is imperfectly tightened so that there is a narrow gap of thickness $h$. Obtain an expression for the leakage rate of the fluid through the flange.


Note that this is a radial flow problem and B in the notes becomes $2 \pi$ r and dp/dx becomes $-\mathrm{dp} / \mathrm{dr}$. An integration between inner and outer radii will be required to give flow rate Q in terms of pressure drop $p$.

The answer is

$$
\mathrm{Q}=\left(2 \pi \mathrm{~h}^{3} \mathrm{p} / 12 \mu\right) /\left\{\ln \left(\mathrm{d}_{\mathrm{o}} / \mathrm{d}_{\mathrm{i}}\right)\right\}
$$


$d T$ acts on $d x \quad d p$ acts $d y$ Balancing forces $\quad d t d x=d p d y$

$$
d p / d \vec{x}=d \tau / d y
$$

But $\tau=\mu \frac{d v}{d y}$ for Newtonian fluids

$$
d p / d x=\mu d(d u / d y) / d y
$$

Assume $d p / d x$ us constant
integrate $\left(\frac{d \rho}{d x}\right) \Delta=\mu \frac{d u}{d y}+A$
Integrate $\left(\frac{d p}{d x}\right) \frac{y^{2}}{2}=\mu u+A y+B$
Boundary conditions $\quad y=0 \otimes u=0 \therefore B=0$

$$
\begin{aligned}
& y=h \quad u=0 \quad(u p p e r \quad s o n \quad s u r(e s) \\
& \left.\left(\frac{d p}{d x}\right) \frac{h^{2}}{2}=p / o\right)+A h \quad A=\left(\frac{d p}{d x}\right) \frac{h}{2}
\end{aligned}
$$

Substitute ute (1)

$$
\left(\frac{d p}{d x}\right) \frac{y^{2}}{2}=\mu u+\frac{d p}{d x} \frac{b}{2} v
$$

Rearromes

$$
v^{2}=\frac{d p}{d x} \frac{1}{2 d}\left[y^{2}-h y\right]
$$

 S.T. (OUT OF PAGE)

$$
\begin{aligned}
& \text { b } \\
& \operatorname{ly}^{\frac{1}{1 d y}} \\
& d \varphi=u t d y=t\left(\frac{d p}{d x}\right) \frac{1}{2 \mu}\left[y^{2}-h y\right] d y \\
& \begin{array}{l}
\text { NTEGRATE } \\
P=G\left(\frac{d P}{d x}\right) \frac{1}{2 \mu} \int_{0}^{h}\left(y^{2}-h_{y}\right) d y
\end{array} \\
& \phi=t\left(\frac{d p}{d x}\right) \frac{1}{2 \mu}\left[43 / 3-h 4^{2 / 2}\right]_{0}^{h} \\
& \varphi=G\left(\frac{d p}{d x}\right) \frac{1}{2 \mu}\left[h^{3} / 3-h^{3 / 2}\right] \\
& \varphi=-6\left(\frac{d p}{d x}\right) \frac{h^{3}}{12 \mu}
\end{aligned}
$$

Mear velcita $=\quad A=b l$

$$
\left.t_{m}=\frac{-b\left(\frac{d p}{d x}\right) \frac{h^{3}}{12 \mu}}{6 h}=-\frac{d p}{d x}\right) \frac{h^{2}}{12 \mu}
$$

Part 3

$$
\varphi=-t\left(\frac{d p}{d x}\right) \frac{h^{3}}{12 \mu}
$$

Fhow betweer flemqes is radial

$$
\begin{aligned}
& b=\text { curcumference }=2 \pi r \\
& x=\text { radius }=r \\
& h=G A P \\
& Q-2 \pi r \frac{d p}{d r} \frac{h^{3}}{12 \mu} \\
& \frac{d r}{r}=-\frac{2 \pi h^{3}}{12 \mu \varphi} d p \quad Q \text { is consiant at all vadit } \\
& \int_{r}^{R} \frac{d r}{r}=\frac{-2 \pi h^{3}}{12 \mu \varphi} \int_{\rho}^{0} d p \\
& \ln \Gamma / R=\frac{-2 \pi h^{3}}{12 \mu 4} P \\
& \phi=\frac{-2 \pi h^{3}}{12 \mu} \ln r / R=+\frac{2 \pi h^{3}}{12 \mu \ln (R / r)} \\
& Q=\frac{2 \pi h^{3} p^{(d)}}{12 \mu \ln (d i)}
\end{aligned}
$$

