ENGINEERING SCIENCE H1

OUTCOME 1 - TUTORIAL 4

COLUMNS

EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 – H1 FORMERLY UNIT 21718P

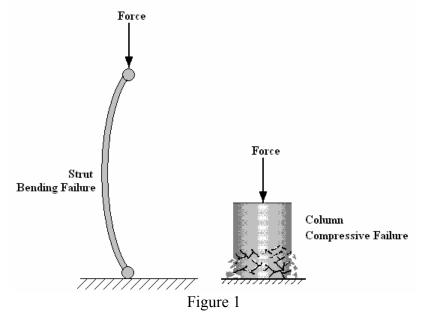
This material is duplicated in the Mechanical Principles module H2 and those studying the Mechanical Engineering course will find this a good introduction to that module.

You should judge your progress by completing the self assessment exercises.

These may be sent for marking or you may request copies of the solutions at a cost (see home page).

On completion of this tutorial you should be able to do the following.

- Explain the difference between a column and a strut.
- Define and calculate slenderness ratio.
- Calculate the stress in a column.
- Calculate the stress in a column with offset loads.
- Determine the maximum offset for a safe load.


It is assumed that students doing this tutorial already understand direct stress and bending stress.

INTRODUCTION

Compression members are loaded in the direction of their length and not transversely (beams). They may be long relative to their cross section in which case they are STRUTS or short in which case they are COLUMNS. There is obviously an 'in between' case called intermediate members. In this module you are required to study columns but you do need to appreciate the difference.

STRUTS fail by bending and buckling so they very limited as a structural element.

COLUMNS fail in compression. In civil engineering they are often made of brittle material which is strong in compression such as cast iron, stone and concrete. These materials are weak in tension so it is important to ensure that bending does not produce tensile stresses in them. If the compressive stress is too big, they fail by crumbling and cracking. Structural steel is also used as columns and the cross section properties of standard rolled steel columns (RSC) are found in British Standard **BS4 part 1**. A sample of this table is attached at the end.

2. <u>SLENDERNESS RATIO</u>

One way of deciding whether a compression member is long relative to its cross section is the use of slenderness ratio. This is defined as:

$$S.R. = \frac{L}{k}$$

L is the effective length and k is the radius of gyration for the cross sectional area. A strut is defined as having a slenderness ratio is greater than 120 when made of steel and 80 when made of aluminium.

3. RADIUS OF GYRATION k

The radius of gyration is defined as

I is the 2nd moment of area and A is the cross sectional area.

These properties may be looked up in tables for standard RSC but must be calculated for other sections.

 $k = \sqrt{\frac{I}{\Lambda}}$

WORKED EXAMPLE No.1

Derive formulae for the radius of gyration of a circle diameter D and a rectangle width B and depth D.

Circle $I = \frac{\pi D^4}{64}$ $A = \frac{\pi D^2}{4}$ $k = \sqrt{\frac{4\pi D^4}{64\pi D^2}} = \frac{D}{4}$

Rectangle

$$I = \frac{BD^3}{12} \qquad A = BD \qquad k = \sqrt{\frac{BD^3}{12BD}} = \frac{D}{\sqrt{12}}$$

WORKED EXAMPLE No.2

Calculate the slenderness ratio of a strut made from a hollow tube 20 mm outside diameter and 16 mm inside diameter and 1.2 metres long. $I = \frac{\pi (D^4 - d^4)}{C4} = \frac{\pi (20^4 - 16^4)}{C4} = 4637 \text{mm}^4$

ment of area is

$$A = \frac{\pi (D^2 - d^2)}{4} = \frac{\pi (20^2 - 16^2)}{4} = 113.1 \, \text{mm}^2$$

$$k = \sqrt{\frac{1}{A}} = \sqrt{\frac{4637}{113.1}} = 6.4 \, \text{mm}$$

For a hollow tube the second moment of area is

$$VA = \sqrt{113.1}$$

S.R. = $\frac{L}{k} = \frac{1200 \text{ mm}}{6.4 \text{ mm}} = 187.5$

SELF ASSESSMENT EXERCISE No.1

 Find the radius of gyration and the slenderness ratio of a strut made from 5 m length of hollow tube 50 mm outer diameter and 40 mm inner diameter. (Ans 16 mm and 312.3)

4. COMPRESSION STRESS

It is bad practise to apply a load at a point on brittle columns because high local stress results in that region. A steel plate should be used to spread the load over the section. Ideally the load is applied at the centre of area and it is assumed that the compressive stress spreads out evenly over the section. If the load is F and the cross sectional area is A then the direct (compressive) stress is $\sigma_D = -F/A$ (compression is negative)

5. OFFSET LOADS

If the load is not applied at the centre of area, bending is induced in the column and it is more likely to fail. Brittle columns in particular must not be allowed to go into tension or they will crack. This is illustrated in figure 3.

When the load is applied a distance 'x' from the centroid, a bending moment is induced in the column as shown. The bending moment is M = F x where x is the offset distance.

From the well known formula for bending stress we have $\sigma_B = My/I$

y is the distance from the centroid to the edge of the column.

The stress produced will be +ve (tensile) on one edge and -ve (compressive) on the other.

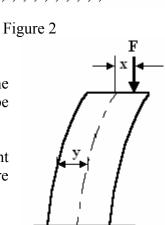
On the compressive edge this will add to the direct compressive stress making it larger so that

$$\sigma = \sigma_{\rm B} + \sigma_{\rm D} = -My/I - F/A$$

On the tensile edge the resulting stress is $\sigma = \sigma_{\rm B} + \sigma_{\rm D} = My/I - F/A$

Substitute M = F x

$$\sigma = \frac{Fxy}{I} - \frac{F}{A}$$


Note that offset loads induce bending and makes buckling easier if the column is long enough to be affected by it.

WORKED EXAMPLE No.2

A column is 0.5 m diameter and carries a load of 500 kN offset from the centroid by 0.1m. Calculate the extremes of stresses.

SOLUTION

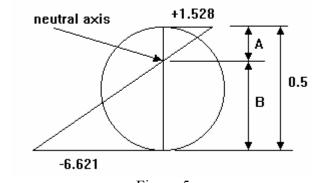
 $F = 500 \text{ kN} \qquad x = 0.1 \text{ m} \qquad y = D/2 = 0.25 \text{ m}$ $I = \pi D^4/64 = \pi \times 0.5^4/64 = 0.00307 \text{ m}^4 \qquad A = \pi D^2/4 = \pi \times 0.5^2/4 = 0.196 \text{ m}^2$ $\underline{\text{Tensile Edge}} \qquad \sigma = \frac{Fxy}{I} - \frac{F}{A} = \frac{500000 \times 0.1 \times 0.25}{0.00307} - \frac{500000}{0.196} = 1.52 \text{ MPa}$ $\underline{\text{Compressive Edge}} \qquad \sigma = -\frac{Fxy}{I} - \frac{F}{A} = -\frac{500000 \times 0.1 \times 0.25}{0.00307} - \frac{500000}{0.196} = -6.62 \text{ MPa}$

Force

spreader plate

Area

6. <u>NEUTRAL AXIS</u>


The neutral axis is the axis of zero stress. In the above example, the stress varied from 1.528 MPa on one edge to -6.621 MPa on the other edge. Somewhere in between there must a value of y which makes the stress zero. This does not occur on the centroid but is by definition the position of the neutral axis. Ideally this axis should not be on the section at all so that no tensile stress occurs in the column. The position of the neutral axis can easily be found by drawing a stress distribution diagram and then either scaling off the position or calculate it from similar triangles.

WORKED EXAMPLE No.3

Determine the position of the neutral axis for the column in example 2.

SOLUTION

Drawing a graph of stress against position (y) along a diameter we get the figure shown (not drawn to scale). If it is drawn to scale the position of the neutral axis may be scaled off.

Using similar triangles we arrive at the solution as follows.

A + B = 0.5 A = 0.5 - B A/1.528 = B/6.621 (0.5 - B)/1.528 = B/6.621 3.3105 - 6.621B = 1.528 BB = 0.406 m

7. MAXIMUM OFFSET

If a column must not go into tension, then the maximum offset may be calculated. Consider a circular section first. The combined stress due to compression and bending is:

$$\sigma = \frac{Fxy}{I} - \frac{F}{A}$$

If the edge must not go into tension then the maximum stress will be zero so:

$$\frac{Fxy}{I} - \frac{F}{A} = 0 \qquad x(max) = \frac{I}{Ay} = \frac{Z}{y}$$

For a round section $A = \pi D^2/4$ I = $\pi D^4/64$ and y = D/2 If we substitute we get

$$x(\max) = \frac{4\pi D^4}{64\pi D^2 D/2} = \frac{D}{8}$$

The load must be no more than D/8 from the centroid.

If the column is a rectangular section $I = BD^3/12$ A = BD and the critical value of y is D/2 $x(max) = \frac{I}{Ay} = \frac{2 BD^3}{12 BD D} = \frac{D}{6}$ when the offset is on the short axis.

When the offset is on the long axis x(max) is B/6. This means the offset must be within the middle 1/3 of the column and this is called the **middle third rule**. The shaded area on the diagram shows the safe region for applying the load.

Figure 6

For any standard section such as those in BS4, the maximum offset is easily found from x = Z/y although for steel sections some tension is allowed.

WORKED EXAMPLE No.3

A column is made from an universal 'I' section $305 \times 305 \times 97$. A load of 2 MN is applied on the x axis 200 mm from the centroid. Calculate the stress at the outer edges of the x axis.

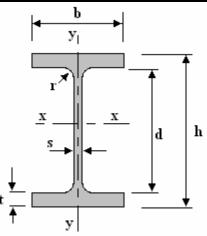
If the column is 5 m tall, what is the slenderness ratio?

SOLUTION

The offset is x = 0.2 m and the load F = 2 MN

From the table I = 22249 x 10⁻⁸ m⁻⁴ A = 123 x 10⁻⁴ m² y = h/2 = 0.154 m $\sigma_{c} = -\frac{Fxy}{I} - \frac{F}{A} = -\frac{(2 \times 10^{6})(0.2)(0.154)}{I} - \frac{2 \times 10^{6}}{123 \times 10^{-4}} = -439 \text{ MPa}$ $\sigma_{T} = \frac{Fxy}{I} - \frac{F}{A} = \frac{(2 \times 10^{6})(0.2)(0.154)}{I} - \frac{2 \times 10^{6}}{123 \times 10^{-4}} = 114 \text{ MPa}$ There are two radii of gyration. $k_{x} = 0.134 \text{ k}_{y} = 0.0769 \text{ m}$ Slenderness Ratio about the x axis is = I/ $k_{x} = 37.3$ Slenderness Ratio about the y axis is = I/ $k_{y} = 65$ These are well below the limit of 120 for steel but the bending might cause collapse and would be worth checking.

SELF ASSESSMENT EXERCISE No.2


- A column is 0.4 m diameter. It has a vertical load of 300 kN acting 0.05m from the centroid. Calculate the stresses on the extreme edges. (Answers 0 MPa and -4.77 MPa).
- 2. A column is 0.3 m diameter. Calculate the offset position of the load which just prevents the one edge from going into tension. (Answer 0.038 m).
- 3. A column is made from a rectangular block of concrete with a section 600 mm x 300 mm. What is the maximum offset of a point load that just prevents the edge going into tension. (Answer 50 mm).
- A column is made from cast iron tube 0.4 m outside diameter with a wall 40 mm thick. The top is covered with a flat plate and a vertical load of 70 kN is applied to it. Calculate the maximum allowable offset position of the load if the material must always remain in compression. (Answer 0.082 m)
- 5. A hollow cast iron pillar, 38 cm outside diameter and wall thickness 7.5 cm, carries a load of 75 kN along a line parallel to, but displaced 3 cm from, the axis of the pillar. Determine the maximum and minimum stresses in the pillar.

What is the maximum allowable eccentricity of the load relative to the axis of the pillar if the stresses are to be compressive at all points of the cross section?

6. A column is 4 m tall and made from an universal 'I' section 152 x 152 x 23. A load of 60 kN is applied on the x axis 110 mm from the centroid. Calculate the stress at the outer edges of the x axis.

(35.2 MPa tensile and 45 MPa compressive, SL = 61 about the x axis and 108 about y axis)

SAMPLE OF TABLE FOR UNIVERSAL COLUMNS WITH 'I' SECTION

Designation	Mass per m	Depth of Section	Width of Section	Thickness of			Depth	Area	Second Moment Area		Radius of Gyration		Elastic Modulus		Plastic Modulus	
				Web	Flange	Root Radius	between Fillets	of Section	Axis Axis		Axis Axis		Axis	aius Axis	Axis	Axis
									х-х	у-у	х-х	у-у	х-х	у-у	х-х	у-у
	М	h	b	S	t	r	d	А	Ix	Iy	rx	ry	Zx	Zy	Sx	Sy
	kg/m	mm	mm	mm	mm	mm	mm	cm ²	cm ⁴	cm ⁴	cm	cm	cm ³	cm ³	cm ³	cm ³
356x406x634	633.9	474.6	424	47.6	77	15.2	290.2	808	274845	98125	18.4	11	11582	4629	14235	7108
356x406x551	551	455.6	418.5	42.1	67.5	15.2	290.2	702	226938	82671	18	10.9	9962	3951	12076	6058
356x406x467	467	436.6	412.2	35.8	58	15.2	290.2	595	183003	67834	17.5	10.7	8383	3291	10002	5034
356x406x393	393	419	407	30.6	49.2	15.2	290.2	501	146618	55367	17.1	10.5	6998	2721	8222	4154
356x406x340	339.9	406.4	403	26.6	42.9	15.2	290.2	433	122543	46853	16.8	10.4	6031	2325	6999	3544
356x406x287	287.1	393.6	399	22.6	36.5	15.2	290.2	366	99875	38677	16.5	10.3	5075	1939	5812	2949
356x406x235	235.1	381	394.8	18.4	30.2	15.2	290.2	299	79085	30993	16.3	10.2	4151	1570	4687	2383
356x368x202	201.9	374.6	374.7	16.5	27	15.2	290.2	257	66261	23688	16.1	9.6	3538	1264	3972	1920
356x368x177	177	368.2	372.6	14.4	23.8	15.2	290.2	226	57118	20529	15.9	9.54	3103	1102	3455	1671
356x368x153	152.9	362	370.5	12.3	20.7	15.2	290.2	195	48589	17553	15.8	9.49	2684	948	2965	1435
356x368x129	129	355.6	368.6	10.4	17.5	15.2	290.2	164	40246	14611	15.6	9.43	2264	793	2479	1199
305x305x283	282.9	365.3	322.2	26.8	44.1	15.2	246.7	360	78872	24635	14.8	8.27	4318	1529	5105	2342
305x305x240	240	352.5	318.4	23	37.7	15.2	246.7	306	64203	20315	14.5	8.15	3643	1276	4247	1951
305x305x198	198.1	339.9	314.5	19.1	31.4	15.2	246.7	252	50904	16299	14.2	8.04	2995	1037	3440	1581
305x305x158	158.1	327.1	311.2	15.8	25	15.2	246.7	201	38747	12569	13.9	7.9	2369	808	2680	1230
305x305x137	136.9	320.5	309.2	13.8	21.7	15.2	246.7	174	32814	10700	13.7	7.83	2048	692	2297	1053
305x305x118	117.9	314.5	307.4	12	18.7	15.2	246.7	150	27672	9059	13.6	7.77	1760	589	1958	895
305x305x97	96.9	307.9	305.3	9.9	15.4	15.2	246.7	123	22249	7308	13.4	7.69	1445	479	1592	726

Designation	Mass per m	Depth of Section	Width of Section	Thickness of			Donth	A 100	Second Moment		Radius		Elastic		Plastic	
				Web	Flange	Root Radius	Depth between Fillets	Area of Section	Area		of Gyration		Modulus		Modulus	
									Axis	Axis	Axis	Axis	Axis	Axis	Axis	Axis
									X-X	у-у	X-X	у-у	X-X	у-у	X-X	у-у
254x254x16	7 167.1	289.1	265.2	19.2	31.7	12.7	200.3	213	29998	9870	11.9	6.81	2075	744	2424	1137
254x254x132	2 132	276.3	261.3	15.3	25.3	12.7	200.3	168	22529	7531	11.6	6.69	1631	576	1869	878
254x254x10	7 107.1	266.7	258.8	12.8	20.5	12.7	200.3	136	17510	5928	11.3	6.59	1313	458	1484	697
254x254x89	88.9	260.3	256.3	10.3	17.3	12.7	200.3	113	14268	4857	11.2	6.55	1096	379	1224	575
254x254x73	73.1	254.1	254.6	8.6	14.2	12.7	200.3	93.1	11407	3908	11.1	6.48	898	307	992	465
203x203x86	86.1	222.2	209.1	12.7	20.5	10.2	160.8	110	9449	3127	9.28	5.34	850	299	977	456
203x203x71	71	215.8	206.4	10	17.3	10.2	160.8	90.4	7618	2537	9.18	5.3	706	246	799	374
203x203x60	60	209.6	205.8	9.4	14.2	10.2	160.8	76.4	6125	2065	8.96	5.2	584	201	656	305
203x203x52	52	206.2	204.3	7.9	12.5	10.2	160.8	66.3	5259	1778	8.91	5.18	510	174	567	264
203x203x46	46.1	203.2	203.6	7.2	11	10.2	160.8	58.7	4568	1548	8.82	5.13	450	152	497	231
152x152x37	37	161.8	154.4	8	11.5	7.6	123.6	47.1	2210	706	6.85	3.87	273	91.5	309	140
152x152x30	30	157.6	152.9	6.5	9.4	7.6	123.6	38.3	1748	560	6.76	3.83	222	73.3	248	112
152x152x23	23	152.4	152.2	5.8	6.8	7.6	123.6	29.2	1250	400	6.54	3.7	164	52.6	182	80.2