
© D.J.DUNN 1 

ENGINEERING SCIENCE H1 
 

OUTCOME 1 - TUTORIAL 4 
 

COLUMNS 
 
 

EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 – H1 
FORMERLY UNIT 21718P 

 
 
This material is duplicated in the Mechanical Principles module H2 and those studying 
the Mechanical Engineering course will find this a good introduction to that module. 
 
You should judge your progress by completing the self assessment exercises.  
 
These may be sent for marking or you may request copies of the solutions at a cost (see 
home page). 
 
On completion of this tutorial you should be able to do the following. 
 
 
 

• Explain the difference between a column and a strut. 
 
• Define and calculate slenderness ratio. 

 
• Calculate the stress in a column. 

 
• Calculate the stress in a column with offset loads. 

 
• Determine the maximum offset for a safe load. 

 
 
 
It is assumed that students doing this tutorial already understand direct stress and 
bending stress. 



INTRODUCTION
 
Compression members are loaded in the direction of their length and not transversely (beams). They 
may be long relative to their cross section in which case they are STRUTS or short in which case they 
are COLUMNS. There is obviously an ‘in between’ case called intermediate members. In this module 
you are required to study columns but you do need to appreciate the difference. 
 
STRUTS fail by bending and buckling so they very limited as a structural element. 
 
COLUMNS fail in compression. In civil engineering they are often made of brittle material which is 
strong in compression such as cast iron, stone and concrete. These materials are weak in tension so it is 
important to ensure that bending does not produce tensile stresses in them. If the compressive stress is 
too big, they fail by crumbling and cracking. Structural steel is also used as columns and the cross 
section properties of standard rolled steel columns (RSC) are found in British Standard BS4 part 1. A 
sample of this table is attached at the end. 

 
Figure 1 

 
2. SLENDERNESS RATIO 
 
One way of deciding whether a compression member is long relative to its cross section is the use of 
slenderness ratio. This is defined as: 

k
LS.R. =  

L is the effective length and k is the radius of gyration for the cross sectional area. A strut is defined as 
having a slenderness ratio is greater than 120 when made of steel and 80 when made of aluminium. 
 
3. RADIUS OF GYRATION k 

The radius of gyration is defined as   
A
Ik =  

I is the 2nd moment of area and A is the cross sectional area. 
 
These properties may be looked up in tables for standard RSC but must be calculated for other sections.  
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 WORKED EXAMPLE No.1 
 
 Derive formulae for the radius of gyration of a circle diameter D and a rectangle width B and depth 

D. 
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 WORKED EXAMPLE No.2 
 
 Calculate the slenderness ratio of a strut made from a hollow tube 20 mm outside diameter and 16 

mm inside diameter and 1.2 metres long. 

 For a hollow tube the second moment of area is 
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 SELF ASSESSMENT EXERCISE No.1 
 
1.  Find the radius of gyration and the slenderness ratio of a strut made from 5 m length of hollow 

tube 50 mm outer diameter and 40 mm inner diameter. 
 (Ans 16 mm and 312.3) 
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4. COMPRESSION STRESS
 
It is bad practise to apply a load at a point on brittle columns 
because high local stress results in that region. A steel plate 
should be used to spread the load over the section. Ideally the 
load is applied at the centre of area and it is assumed that the 
compressive stress spreads out evenly over the section. If the 
load is F and the cross sectional area is A then the direct 
(compressive) stress is σD = -F/A (compression is negative) 
 
 
              F
5. 

igure 2 
SET LOADSOFF  

 the load is not applied at the centre of area, bending is induced in the 

When the load is applied a distance 'x  the centroid, a bending moment 

mula for bending stress we have  σB = My/I 
n

 (compressive) 

      Figure 3 

y/I  - F/A  

 
If
column and it is more likely to fail. Brittle columns in particular must not be 
allowed to go into tension or they will crack. This is illustrated in figure 3. 

 
' from

is induced in the column as shown. The bending moment is  M = F x where 
x is the offset distance.  
From the well known for
y is the distance from the centroid to the edge of the colum . 
The stress produced will be +ve (tensile) on one edge and -ve
on the other. 
  
On the compressive edge this will add to the direct compressive stress making it larger so that 
   σ = σB + σD = -My/I  - F/A  
On the tensile edge the resulting stress is σ = σB + σD = M

A
F

I
Fxσ =  y

−

akes buckling easier if the column is long enough to be 

Substitute M = F x  

Note that offset loads induce bending and m
affected by it. 
 
 
 WORKED EXAMPLE No.2 
 
 A column is 0.5 m diameter and carries a load of 500 kN offset from the centroid by 0.1m. 

Calculate the extremes of stresses. 
 
 SOLUTION 
 
 F = 500 kN    x = 0.1 m   y = D/2 = 0.25 m     
 I = πD4/64 = π x 0.5 /4 = π x 0.52/4 = 0.196 m24/64 = 0.00307 m4  A = πD2
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 Tensile Edge  MPa 1.52
0.196

5000000.25 x 0.1 x 500000Fxyσ =−==
0.00307A

F
I

−   

 Compressive Edge  MPa 62.6
0.196

500000
0.00307

0.25 x 0.1 x 500000
A
F

I
Fxyσ −=−−=−−=  
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. NEUTRAL AXIS6  
 
The neutral axis is the axis of zero stress. In the above example, the stress varied from 1.528 MPa on 
one edge to -6.621 MPa on the other edge. Somewhere in between there must a value of y which makes 
the stress zero. This does not occur on the centroid but is by definition the position of the neutral axis. 
Ideally this axis should not be on the section at all so that no tensile stress occurs in the column. The 
position of the neutral axis can easily be found by drawing a stress distribution diagram and then either 
scaling off the position or calculate it from similar triangles. 
 
 
 WORKED EXAMPLE No.3 
 
 Determine the position of the neutral axis for the column in example 2. 
 
 SOLUTION 
 
 Drawing a graph of stress against position (y) along a diameter we get the figure shown (not drawn 

to scale). If it is drawn to scale the position of the neutral axis may be scaled off. 

 
Figure 5 

 
 Using similar triangles we arrive at the solution as follows. 
  A + B = 0.5 
  A = 0.5 - B 
  A/1.528 = B/6.621 
  (0.5 - B)/1.528 = B/6.621 
  3.3105 - 6.621B = 1.528 B 
  B = 0.406 m 
 
 
7. MAXIMUM OFFSET
 
If a column must not go into tension, then the maximum offset may be calculated. Consider a circular 
section first. The combined stress due to compression and bending is: 

A
F

I
Fxyσ −=  

If the edge must not go into tension then the maximum stress will be zero so: 

y
Z

Ay
I  x)      x(ma0

A
F

I
Fxy

===−  



© D.J.DUNN 6 

 πD2/4   I = πD4/64  and y = D/2   If we substitute we get For a round section A =

8D/2D 64
   x(max) 2 ==

DD4 4

π
π  

The load must be no more than D/8 from the centroid. 
 
If the column is a rectangular section  I = BD3/12    A = BD  and the critical value of y is D/2 

6
DBD 2I  x(max)

3

=== when the off
D BD 12Ay

set is on the short axis. 

hen the offset is on the long axis x(max) is B/6 . This means the offset must be within the middle 1/3 
f t  middle third rule. The shaded area on the diagram shows the safe 
gion for applying the load. 

W
o he column and this is called the
re

 
Figure 6 

For any standard section such as those in BS4, the maximum offset is easily found from x = Z/y 
although for steel sections some tension is allowed. 
 
 
 WORKED EXAMPLE No.3 
 
 A column is made from an universal ‘I’ section 305 x 305 x 97. A load of 2 MN is applied on the x 

axis 200 mm from the centroid.  Calculate the stress at the outer edges of the x axis. 
 
 If lumn is 5 m tall, what is th the co e slenderness ratio? 
 
 SOLUTION 
 
 T et is x = 0.2 mhe offs  and the load F = 2 MN 
 

From -8 m-4   A = 123 x 10-4 m2   y = h/2 = 0.154 m      the table I = 22249 x 10

 MPa 439
10x 123IAI 4-c

10 x 254))(0.2)(0.1σ
66

−=−−=−−=  10 x (2FFxy

 MPa 11410 x 254))(0.2)(0.110 x (2FFxyσ
66

T =−=−=  
10x 123IAI 4-

 There are two radii of gyration. kx = 0.134  ky = 0.0769 m 
 Slenderness Ratio about the x axis is = I/ kx = 37.3 
 Slenderness Ratio about the y axis is = I/ ky = 65 
 These are well below the limit of 120 for steel but the bending might cause collapse and would be 

worth checking. 
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 SELF ASSESSMENT EXERCISE No.2 
 
1.  A column is 0.4 m diameter. It has a vertical load of 300 kN acting 0.05m from the centroid. 

Calculate the stresses on the extreme edges.  
 (Answers 0 MPa and -4.77 MPa). 
 
2.  A column is 0.3 m diameter. Calculate the offset position of the load which just prevents the one 

edge from going into tension. (Answer 0.038 m). 
 
3. A column is made from a rectangular block of concrete with a section 600 mm x 300 mm. What is 

the maximum offset of a point load that just prevents the edge going into tension.  
 (Answer 50 mm). 
 
4.  A column is made from cast iron tube 0.4 m outside diameter with a wall 40 mm thick. The top is 

covered with a flat plate and a vertical load of  70 kN is applied to it. Calculate the maximum 
allowable offset position of the load if the material must always remain in compression.  

 (Answer 0.082 m) 
 
5.  A hollow cast iron pillar, 38 cm outside diameter and wall thickness 7.5 cm, carries a load of 75 kN 

along a line parallel to, but displaced 3 cm from, the axis of the pillar. Determine the maximum and 
minimum stresses in the pillar. 

 
 What is the maximum allowable eccentricity of the load relative to the axis of the pillar if the 

stresses are to be compressive at all points of the cross section? 
 
6. A column is 4 m tall and made from an universal ‘I’ section 152 x 152 x 23. A load of 60 kN is 

applied on the x axis 110 mm from the centroid.  Calculate the stress at the outer edges of the x 
axis.  

 (35.2 MPa tensile and 45 MPa compressive, SL = 61 about the x axis and 108 about y axis) 
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SAMPLE OF TABLE FOR UNIVERSAL COLUMNS WITH ‘I’ SECTION 

 
Thickness of Second Moment  

Area 
Radius  

of Gyration 
Elastic 

Modulus 
Plastic 

Modulus 
Designation 

Mass 
per 
m 

Depth 
of 

Section 

Width 
of 

Section Web Flange 

Depth 
between 
Fillets 

Root  
Radius 

Area 
of 

Section Axis  
x-x 

Axis  
y-y 

Axis  
x-x 

Axis  
y-y 

Axis  
x-x 

Axis  
y-y 

Axis  
x-x 

Axis  
y-y 

  M h b s t r d A Ix Iy rx ry Zx Zy Sx Sy 
  kg/m mm mm mm mm mm mm cm2 cm4 cm4 cm cm cm3 cm3 cm3 cm3

356x406x634 633.9 474.6 424 47.6 77 15.2 290.2 808 274845 98125 18.4 11 11582 4629 14235 7108 
356x406x551 551 455.6 418.5 42.1 67.5 15.2 290.2 702 226938 82671 18 10.9 9962 3951 12076 6058 
356x406x467 467 436.6 412.2 35.8 58 15.2 290.2 595 183003 67834 17.5 10.7 8383 3291 10002 5034 
356x406x393 393 419 407 30.6 49.2 15.2 290.2 501 146618 55367 17.1 10.5 6998 2721 8222 4154 
356x406x340 339.9 406.4 403 26.6 42.9 15.2 290.2 433 122543 46853 16.8 10.4 6031 2325 6999 3544 
356x406x287 287.1 393.6 399 22.6 36.5 15.2 290.2 366 99875 38677 16.5 10.3 5075 1939 5812 2949 
356x406x235 235.1 381 394.8 18.4 30.2 15.2 290.2 299 79085 30993 16.3 10.2 4151 1570 4687 2383 
356x368x202 201.9 374.6 374.7 16.5 27 15.2 290.2 257 66261 23688 16.1 9.6 3538 1264 3972 1920 
356x368x177 177 368.2 372.6 14.4 23.8 15.2 290.2 226 57118 20529 15.9 9.54 3103 1102 3455 1671 
356x368x153 152.9 362 370.5 12.3 20.7 15.2 290.2 195 48589 17553 15.8 9.49 2684 948 2965 1435 
356x368x129 129 355.6 368.6 10.4 17.5 15.2 290.2 164 40246 14611 15.6 9.43 2264 793 2479 1199 
305x305x283 282.9 365.3 322.2 26.8 44.1 15.2 246.7 360 78872 24635 14.8 8.27 4318 1529 5105 2342 
305x305x240 240 352.5 318.4 23 37.7 15.2 246.7 306 64203 20315 14.5 8.15 3643 1276 4247 1951 
305x305x198 198.1 339.9 314.5 19.1 31.4 15.2 246.7 252 50904 16299 14.2 8.04 2995 1037 3440 1581 
305x305x158 158.1 327.1 311.2 15.8 25 15.2 246.7 201 38747 12569 13.9 7.9 2369 808 2680 1230 
305x305x137 136.9 320.5 309.2 13.8 21.7 15.2 246.7 174 32814 10700 13.7 7.83 2048 692 2297 1053 
305x305x118 117.9 314.5 307.4 12 18.7 15.2 246.7 150 27672 9059 13.6 7.77 1760 589 1958 895 
305x305x97 96.9 307.9 305.3 9.9 15.4 15.2 246.7 123 22249 7308 13.4 7.69 1445 479 1592 726 



 
Thickness of Second Moment  

Area 
Radius  

of Gyration 
Elastic 

Modulus 
Plastic 

Modulus 
Designation 

Mass 
per 
m 

Depth 
of 

Section 

Width 
of 

Section Web Flange 
Root  

Radius 

Depth 
between 
Fillets 

Area 
of 

Section Axis  
x-x 

Axis  
y-y 

Axis  
x-x 

Axis  
y-y 

Axis  
x-x 

Axis  
y-y 

Axis  
x-x 

Axis  
y-y 

254x254x167 167.1 289.1 265.2 19.2 31.7 12.7 200.3 213 29998 9870 11.9 6.81 2075 744 2424 1137 
254x254x132 132 276.3 261.3 15.3 25.3 12.7 200.3 168 22529 7531 11.6 6.69 1631 576 1869 878 
254x254x107 107.1 266.7 258.8 12.8 20.5 12.7 200.3 136 17510 5928 11.3 6.59 1313 458 1484 697 
254x254x89 88.9 260.3 256.3 10.3 17.3 12.7 200.3 113 14268 4857 11.2 6.55 1096 379 1224 575 
254x254x73 73.1 254.1 254.6 8.6 14.2 12.7 200.3 93.1 11407 3908 11.1 6.48 898 307 992 465 
203x203x86 86.1 222.2 209.1 12.7 20.5 10.2 160.8 110 9449 3127 9.28 5.34 850 299 977 456 
203x203x71 71 215.8 206.4 10 17.3 10.2 160.8 90.4 7618 2537 9.18 5.3 706 246 799 374 
203x203x60 60 209.6 205.8 9.4 14.2 10.2 160.8 76.4 6125 2065 8.96 5.2 584 201 656 305 
203x203x52 52 206.2 204.3 7.9 12.5 10.2 160.8 66.3 5259 1778 8.91 5.18 510 174 567 264 
203x203x46 46.1 203.2 203.6 7.2 11 10.2 160.8 58.7 4568 1548 8.82 5.13 450 152 497 231 
152x152x37 37 161.8 154.4 8 11.5 7.6 123.6 47.1 2210 706 6.85 3.87 273 91.5 309 140 
152x152x30 30 157.6 152.9 6.5 7.6 123.6 38.3 1748 560 6.76 222 9.4 3.83 73.3 248 112 
152x152x23 23 15 15 5.8 7.6 12 29. 1250 6.54 164 182 2.4 2.2 6.8 3.6 2 400 3.7 52.6 80.2 
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