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SOLID MECHANICS 

 

DYNAMICS 

 

TUTORIAL – TORSIONAL OSCILLATIONS 

 

On completion of this tutorial you should be able to solve the natural frequency of 

torsional vibrations for shafts carrying multiple moments of inertia. You are advised to 

study the tutorials on free vibrations before commencing on this. 

 

To do the tutorial fully you must be familiar with the following concepts. 

 

 Torsion theory. 

 Moments of Inertia. 

 Torsional stiffness of shafts. 

 Simple harmonic motion. 

 

The principle explained here is called HOLZER’S METHOD. 
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1. Introduction 

 

This tutorial is about finding the natural frequency of torsional vibrations for shafts carrying multiple 

moments of inertia. A typical problem is illustrated below. The principle to be used is called Holzer’s 

Method. 

 
Figure 1 

 

If we have several discs on a shaft as shown, there are several possible modes and natural frequencies. A 

method of solving this system is due to Holzer. The reasoning goes like this. 

 

Disc 1 twist relative to disc 2. The toque balance gives  

 T = I1 1 + kt1(1 - 2) = 0 
 

Disc 2 twist relative to discs 1 and 3. The toque balance gives 

  T = I2 2 + kt1(2 - 1) + kt2(2 - 3) = 0 

 

Disc 3 twist relative to disc 2. The toque balance gives 

 T = I3 3 + kt2(3 - 2) = 0 
The total torque is 

 

T = 0 = I1 1 + kt1(1 - 2) + I2 2 + kt1(2 - 1) + kt2(2 - 3) + I3 3 + kt2(3 - 2) 

 

0 = I1 1 + kt11 - kt12  + I2 2 + kt12 - kt1 1  + kt22 - kt23  + I3 3 + kt23 - kt22  
 

0 = I1 1 + I2 2 + I3 3  

 

For simple harmonic motion we may substitute 
2
 = - into each equation and rearrange them to give 

 

0 = I1 1
2
 1  + I2 2

2
 2+ I3 3

2
 3 

 

For any number of discs this may be generalised as (I 
2 
) = 0 

 

Holzer’s method of solution proposes that we assume any value of  and make 1= 1 and calculate all the 

other deflections. The deflection of disc 2 may be found by rearranging 

 

    
                              

  

   
              

  

   
     

 

The deflection of disc 3 may be found by rearranging 
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If this was continued the pattern for any number of discs would be as follows. 

 

      
  

   
     

 

      
  

   
            

 

      
  

   
                 

And so on for as many as exist. 

 

Next we consider the torque produced by the twisting.  T = I  and  = 
2
 so T = 

2 
I  

 

The torque to deflect disc 1 by 1 is  
2
 I1 1 

 

The torque to deflect disc 2 by 2 is  
2
 I2 2 

 

The torque to deflect disc 3 by 3 is  
2
 I3 3 

 

And so on for as many shaft section that exist. Hence 

 

   T1 = 
2
 I1 1    T2 = T1 + 

2
 I2 2    T3 = T2 + 

2
 I3 3 

 

And so on for as many shaft section that exist. 

 

Since we must satisfy 

I 
2 
 = 0 

 

Then the last T must be zero when the oscillation is free. The problem is to find the values of  that make 
this so and these are the natural frequencies of the system. 

 

If a computer programme is used, it is relatively simple to evaluate the displacements and the torques for 

all values of . Before we look at difficult problems let’s consider the case of only two rotors. 
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2. Two Inertia Systems 

 

Consider a shaft with torsional stiffness kt connecting two inertias I1 andI2. If the shaft is free to rotate the 

torsional oscillation will take the form of both ends twisting but some point in between will not be 

twisting. This is a node. The shaft must of course be supported in at least two bearings.  

 
Figure 2 

 

The natural frequency can be derived from the previous work. For two rotors, T2 = 0 

 

      
  

   
     

 

          
 

               

Substitute for    

                             

Substitute for    

                 
      
   

  

Simplify and rearrange 

  
      

     
    

  

 

The node will be somewhere between the two rotors. The next worked example will show how to find the 

node. 
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 WORKED EXAMPLE No. 1 

 

 A shaft free to rotate carries a flywheel with I1 = 2 kg m
2
 at one end and I2 = 4 kg m

2
 at the other. 

The shaft connecting them has a stiffness of 4 MN m/rad. Calculate the natural frequency and the 

position of the node.  

 

 SOLUTION 

 

  
      

     
    

        
   

   
        

 

        
   

 
                  

 

 If we regard the node as a fixed point each rotor will have the same natural frequency about that 

point. For a single rotor system 

   
  
 

 

  For the first rotor 

  
        

   
 
                

   For the other rotor 

  
        

   
 
                 

 

   The difference in stiffness is due to the difference in length of the shaft. kt = GJ/L and GJ is the same 

for both sections. 
   
   

 
  
  

 
 

  
         

  
 
                     

    
 

               

 

                
 

 
         

  

 
 

 The node is L/3 from the right.  This may be found graphically as shown. Let 1 = 1  
 

      
  

   
       

         

     
            

 

 
Figure 3 
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3. Three Inertia Systems 

 

This is best demonstrated with the worked example below. 

 

 

 WORKED EXAMPLE No. 2 

 

 A shaft has three inertias on it of 2, 4 and 2 kg m
2
 respectively viewed from left to right. The shaft 

connecting the first two has a stiffness of 3 MN m/radian and the shaft connecting the last two has a 

stiffness of 2 MN m/radian. The system is supported in bearings at both ends. Ignore the inertia of the 

shafts and find the natural frequencies of the system. 

 

 SOLUTION 

       
 

           
  

   
       

   

     
                 

 

          
  

   
               

  

     
          

  

 T1 = 
2
 I1 1 = 

2
   2  1 = 2 

2
 

 

 T2 = T1 + 
2
 I2 2  = 2

2
 + 4

2
 2 

 

 T3 = T2 + 
2
 I3 3  = 2

2
 + 4

2
 2 + 2

2
 3 

 

 These should ideally be evaluated for all values of  and T3 plotted against . The result is: 
 

 
Figure 4 

 

 The points where T3 = 0 give the natural frequencies and these are about 1 090 and 1 610 rad/s. 
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 In an examination environment, plotting this graph is not a practical option. We must start by 

evaluating in large steps of  and narrowing it down to the points where T3 change from plus to 

minus. This can be very tricky as it is quite possible to miss the critical points if the negative area is a 

small one. 

      1 2   3  T1 T2 T3 
 1 1   1 1   1   2 6 8 

 2 10 1 0.9999 0.9996 200 600 800 

 3 100 1 0.9933 0.9635 2 10
4 

5.97 10
4 

7.9 10
4 

 
4 1000 1 0.3333 -1.333 2 10

6 
3.33 10

6 
0.6667 10

6 

 5 1500 1 -0.5 -0.5 4.5 10
6 

0 -2.25 10
6 

 

 
T3 has gone negative so we need to back. 

 

 6 1250 1 -.0417 -1.474
 

3.125 10
6 

2.86x10
6 

-1.7415  10
6 

 7 1100 1 0.1933 -1.484 2.42 10
6 

3.36x10
6 

-0.237  10
6 

 
8 1050 1 0.265 -1.422 2.2 10

6 
3.37x10

6 
+0.238  10

6 

 9 1070 1 0.2367 -1.45 2.29x10
6 

3.37x10
6 

+0.053  10
6 

 10 1080 1 0.224 -1.46 2.33 10
6 

3.37x10
6 

-0.042  10
6 

 11 1075 1 0.23 -1.46 2.31 10
6 

3.37x10
6 

+0.0058  10
6 

 12 1076 1 0.228 -1.46 2.31 10
6 

3.37x10
6 

-0.0037  10
6 

 

 
Continuing we find the next point at 1 610 

 

 
 

1610 1 -0.728 +0.454 5.18 10
6 

-2.36 10
6 

-0.009  10
6 

 

 The first natural frequency is 1 076 rad/s.  We would have to carry on finding the next natural 

frequency is 1 610 rad/s.  

 

 

 

 WORKED EXAMPLE No. 3 

 

 For the same problem (W. E. 2) determine the approximate nodal points. 

 

 SOLUTION 

 

 This involves plotting the  values at the rotor. 

 
Figure 5 

 

 At 1 610 rad/s the node between rotor 2 and 3 and close to rotor 2. At 1 076 rad/s the node is 

between rotors 2 and 3 and closer to 3 than 2. 
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 SELF ASSESSMENT EXERCISE No. 1 

 

1. A hydraulic motor shaft is supported at the free end in bearings and carries a set of pulley wheels on 

it. The motor has a moment of inertia of 0.8 kg m
2
 and the pulley wheels have a moment of inertia of 

2 kg m
2
. The shaft has a stiffness of 2 MNm/rad. Calculate the natural frequency of torsional 

vibrations. (298 Hz) 

 

Figure 6 

 

2. A winding motor for raising a lift has the winding wheels mounted on bearings as shown. It is 

connected with a coupling. 

 
Figure 7 

 

 kt1 = 80 kN m/rad   kt2 =60 kN m/rad  IMOTOR = 2 kg m
2   

 ICOUPLING = 0.8 kg m
2   

 IWHEEL = 3 kg m
2
 

 

 Show that there is a natural frequency of vibration between 100 and 200 rad/s and another between 

400 and 500 rad/s. 

 

3. A gas turbine is connected to a compressor and a generator through shafts and couplings with 

stiffness and moment of inertia as shown on the diagram. 

 
Figure 8 

Severe torsional observations occur when running at the normal speed of 50 rev/s. Neglect the inertia of 

the shafts and determine the fundamental natural frequency and the mode shape. Use Holzer’s method to 

do this. 
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4. Torsional Oscillations of Very Long Shafts 

 

Oscillations can occur in long transmission shafts such as the drill shaft of an oil rig. The theory is similar 

to that of transverse vibrations and buckling as there can be more than one mode. The derivation uses the 

wave equation. The work applies only to shafts with a circular cross section. The oscillation is entirely 

due to the distributed mass of the long shaft. 

 

4.1 Nomenclature 

 

θ Angle of Twist 

ρ Density of material 

R Radius of shaft 

L Length of shaft 

A Cross Section Area 

G Modulus of Rigidity for the material 

J Polar Second Moment of Area J =  
   

 
  

I Polar Moment of Inertia I = 
   

 
 

α Angular Acceleration  = 
   

   
 

t Time 

ωn Natural Angular Frequency 

fn Natural frequency 

n mode 

 

4.2 Theory 

 

Consider a long shaft fixed a one end and free at the other. Suppose a torque T is applied at the free end. 

 
 

Consider an element of the shaft length δx. The torque at one end is slightly larger than the torque at the 

other by δT. Suppose the torque decreases uniformly with x as 
  

  
 

 

 The net torque on the element is 

   
  

  
   

From the torsion equation we have 

  
   

 
 

For a uniform shaft 
 

 
 
  

  
             

  

  
 

Differentiate with respect to x and  
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The net torque is now  

   
  

  
     

   

   
   

   

The torque on the element must overcome the inertia of the material only. 

 

       
   

   
   

   

   
   

For a solid circular length of shaft  

 

  
   

 
 
      

 
 
        

 
 
    

 
          

 

         
   

   
   

   

   
   

 

  
   

   
  

   

   
 

 

 
   

   
 
 

 

   

   
 

This is usually expressed as  

   

   
 

 

  
   

   
 

c is the velocity of a wave 

   
 

 
     

The standard solution for this equation is 

 

         
  

 
        

  

 
          

A and B are constants. 

 

Now we put in the boundary conditions for the shaft. When x = 0, θ = 0 so putting this in the equation 

 

                                          
 

It follows that B = 0 and our solution reduces to 

 

         
  

 
          

If we differentiate with respect to x 

 
  

  
   

 

 
     

  

 
          

 

When x = L, 
  

  
   

  
 

 
     

  

 
            

It follows that 
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This can only occur if  

     
 

 
 
  

 
 

n is an integer 1, 2, 3 .... 

 

This gives the natural frequency of the system. 

 

      
 

 
 
 

 
 
 

 
            

  

  
    

 

 
 
 

  
 
 

 
      

 

The lowest natural frequency occurs at the fundamental mode n = 1. 

 

 

WORKED EXAMPLE No. 4 

 

A long oil rig drill shaft is modelled as a long uniform shaft fixed at the top and free at the bottom. The 

shaft is 375 m long and has a material density of 7 800 kg/m
3
 and Modulus of Rigidity 70 GPa. 

Determine the fundamental natural frequency. 

 

 SOLUTION 

 

      
 

 
 
 

  
 
 

 
             

 

   
 

  
 
 

 
  

 

     
 
      

     
      

   

  

 

 

 

SELF ASSESSMENT EXERCISE No. 2 

 

A long oil rig drill shaft is modelled as a long uniform shaft fixed at the top and free at the bottom. The 

shaft is 600 m long and has a material density of 7 850 kg/m
3
 and Modulus of Rigidity 75 GPa. 

Determine the fundamental natural frequency. (1.29 Hz) 

                          

 

  

  

 

 


