1.a Sketch Mohr's circle for a dimensional stress system in which:
(i) $\quad \sigma_{x}=10 \quad \sigma_{y}=0 \quad \tau_{x y}=0$
(ii) $\quad \sigma_{x}=10 \quad \sigma_{y}=0 \quad \tau_{\mathrm{xy}}=10$
(iii) $\quad \sigma_{\mathrm{x}}=10 \quad \sigma_{\mathrm{y}}=0 \quad \tau_{\mathrm{xy}}=10$

(ii) $\begin{gathered}\sigma_{x}=0 \\ \sigma_{y}=0\end{gathered}$
$\tau_{\mathrm{xy}}=10$
$\sigma_{y}=0$
$\tau_{\mathrm{xy}}=10$
1.b A hollow shaft is 40 mm outer diameter and 20 mm inner diameter. It is subjected to a bending moment of 1000 Nm . It also transmits a torque. Calculate the maximum torque allowed if
(i) the maximum direct stress is 250 MPa .
(ii) the maximum shear stress is 125 MPa .
$\mathrm{D}=0.04 \mathrm{~m} \quad \mathrm{~d}=0.02 \mathrm{~m} \quad \mathrm{I}:=\frac{\pi \cdot\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)}{64} \quad \mathrm{I}=117.9 \times 10^{-9} \mathrm{~m}^{4}$
BENDING STRESS $\quad \mathrm{M}=1000 \mathrm{kNm} \quad \sigma_{\mathrm{b}}= \pm \mathrm{My} / \mathrm{I} \quad \mathrm{y}=\mathrm{D} / 2=0.02 \mathrm{~m} \quad \sigma_{\mathrm{b}}= \pm 169.8 \mathrm{MPa}$
For torsion $\quad \mathrm{J}:=\frac{\pi \cdot\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)}{32} \quad \mathrm{~J}=235.6 \times 10^{-9} \mathrm{~m}^{4}$
(i) At a point on the surface where the bending stress is 169.8 MPa with a maximum direct stress of 250 MPa Mohr's circle is as shown. From this the shear stress is $\tau_{\mathrm{xy}}=$ $\sqrt{ }\left(165.1^{2}-84.9^{2}\right)=141.6 \mathrm{MPa} \mathrm{MPa}$

From the torsion equation Torque $=\mathrm{T}=\tau \mathrm{J} / \mathrm{R} \quad \mathrm{R}=\mathrm{D} / 2=0.02$ m $\mathrm{T}=\left(141.6 \times 10^{6} \times 235.6 \times 10^{-9}\right) / 0.02=1.668 \mathrm{kN} \mathrm{m}$

(ii) The radius of the circle is the max shear stress so drawing the circle we get the following.
$\tau_{\mathrm{xy}}=\sqrt{ }\left(125^{2}-84.9^{2}\right)=91.74 \mathrm{MPa}$
From the torsion equation Torque $=T=\tau \mathrm{J} / \mathrm{R} \quad \mathrm{R}=\mathrm{D} / 2 \mathrm{R}=0.02$ m

$$
\mathrm{T}=\left(91.74 \times 10^{6} \times 235.6 \times 10^{-9}\right) / 0.02=1.08 \mathrm{kN} \mathrm{~m}
$$

