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CONTROL ENGINEERING 

TUTORIAL 13 

 

THE STABILITY OF PNEUMATIC and HYDRAULIC VALVES 

 

This tutorial is aimed at engineers seeking knowledge on why valve elements sometimes go unstable and 

what can be done to prevent it. 
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1. Electrical Analogues  

 

Part 1 extends the work on analogies covered in Control Tutorial No.1 where you will find more 

information. With these analogies we may apply electrical theory to pneumatic systems such as a dashpot 

which is discussed in depth. In the following work on pneumatics, the changes in density of the gas must be 

very small so the pressure changes must also be small. This makes the theory particularly useful for 

acoustics and the analysis of oscillations in pneumatic systems. 

 

The analogous quantities throughout will be as follows. 

Pressure (p) - Voltage (V) 

Mass flow (  )  - Current(I or i) 
Mass (m) - Charge (Q) 

The analogy deals with three properties, Resistance, Capacitance and Inductance. 

 

1.1. Resistance 

 

A fluid restriction may be approximated to an analogue of an electrical resistor in some analysis. A simple 

restriction is shown. 

 
The flow rate and pressure drop are 

   
  

  
                

 

The relationship between Δp and    is not linear so an exact analogy with the electrical resistance is not 

possible. Ideally we want to have an analogy that fits Ohm's Law. 

 

Δp = R   ………………Pneumatic/Hydraulic 
ΔV = R I ……………….Electrical 

 
In general the relationship is as shown on the diagram. If the flow changes by a small quantity     due to a 
small change in pressure dp then the new flow rate is 

        
  

 
 

 

R is the gradient of the graph at the operating point. If the graph was linear then R would be the perfect 

analogy to electrical resistance. In the analysis of small perturbations in the flow, this analogy is quite 

useful. 

 

Because the gas constant also has a symbol R we will use the alternative symbol G for pneumatic resistance 

when required. 
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1.2. Capacitance 

 

An electrical capacitor obeys the laws 
  

  
    

  

  
       

  

  
 

 

The formula for the value of C in terms of the capacitor's parameters may be found in the electrical tutorials 

on the web site. It follows that a pneumatic or hydraulic equivalent must obey the law 

 
  

  
     

  

  
 

  
It will be shown below that this analogy is quite accurate and that for both hydraulic and pneumatic systems  

 

  
  

  
 

 

  
 

a is the sonic velocity in the medium (liquid or gas). 

 

If a volume V contains a mass m, adding more mass δm will increase the pressure by δp. It follows that 

pressure is an indicator of the mass. 

 

 

 

1.2.1 Pneumatic Capacitance 

 

Consider a length of pipe containing gas such that the volume V = A l. The mass is m, the temperature is T 

and the pressure is p. When the pressure rises adiabatically by an amount dp, the temperature changes 

increases by dT and the mass by dm.  

 
The gas law gives us    pV = mRT  (R is the characteristic gas constant). Differentiate with respect to time 

(note V is constant) 

 
  

  
   

  

  
   

  

  
 

  

 

  

  
   

  

  
      

 

For an adiabatic process we know that 

  
 

                     
   
  

Differentiate with respect to time  
   

 

  

  
 

 

 

  

  
  

Substitute into (1) 

 
  

  
  

   

 
  

  

  
   

  

  
 

Rearrange 
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Studies of gas flow reveal that the term 

                               
Hence 

  

  
 

 

  

  

  
 

Pneumatic capacitance is defined as 

  
 

  
       

 
  

  
  

  

  
 

 

The pneumatic capacitance per unit length of a pipe of length   and bore area A is 

 
 

 
 

 

   
 

  

   
 

 

  
       

 

1.2.2 Hydraulic Capacitance 

 

Liquids are much more compact than gas so the capacitance is smaller and depends on the elasticity of the 

fluid and for high pressures, the elasticity of the pipe walls. 

 

Consider a volume of liquid that is compressed by δV due to a pressure change δp. Define the capacitance as  

 

  
  

  
 

 

The compressibility of the liquid depends on the bulk modulus defined as 

 

   
  

  
 

This is a well documented property of liquids. Assuming constant density 

 

    
  

   
  

  

  
 

 

  
  

  
        

 

 
 

  

 
 

It can be shown that 

   
 

 
   

 

  
  

  
 

 

  
 

 

   
 

 

This is exactly the same as for the pneumatic case.  

 

If the elasticity of the pipe wall is considered we use the modified bulk modulus K'. 

 

    
 

  
 

 

 
 
  

 

 

E is the modulus of elasticity for the pipe material. 
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Expressed in differential form we have the same as for the pneumatic case. 

 
  

  
  

  

  
 

 

The capacitance per unit length of a pipe of length    and bore area A is 
 

 

 
 

 

   
 

  

   
 

 

  
       

 

 Compare this with the electrical and pneumatic formulae for a capacitance. 

 
  

  
     

  

  
                          

 
  

  
    

  

  
             

 

1.3.  Inertance 

 

This derivation is the same for liquids or gases. Inertance is a property that can be given to a fluid flowing in 

a pipe so that it may be used in the analysis pressure and flow variations using the same kind of approach as 

used to electric transmission lines. Consider the length   of a section of pipe with fluid flowing through it. 

 

A = cross sectional area 

  = length 
v = velocity 

ρ = density 

p = pressure 

m = Mass = ρA   

 

If a small change in pressure dp travels along the pipe, the mass will be accelerated. If dp is small, the 

change in density may be neglected. 

 
Inertia force 

               
  

  
    

  

  
                          

 Equating 

        
  

  
                   

  

  
      

The mass flow rate is 

       
  

  
 

The rate of change of mass flow rate is 

   

   
   

  

  
 

Rearrange 

  

  
 

 

  

   

   
 

Substitute into (1) 
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Define Inertance as 

  
 

 
         

   

   
 

Inertance is hence 

  
 

 
                        

 

 
 

 

 
       

 

Compare this with the electrical formula. 

 

    
   

   
                          

 

    
   

   
             

 
Hence we may use pneumatic inertance as an analogy of electrical inductance. 

 

The next section shows how inertance may be applied to the flow through an orifice. 

 

1.4. Orifice Inertance (Gases Only) 

 

This is added for interested parties but not used in the following tutorials. We should know that it is possible 

to make a column of air resonate and produce sounds. Any musical instrument based on this is a form of 

acoustic resonator. Consider an acoustic resonator consisting of a volume and an orifice. This is analogous 

to a simple RCL circuit as shown.  

 
 

When an alternating voltage is applied to the electrical circuit, it is found that it resonates at a frequency 

given by 

   
 

   
          

  

  
 

 

You will find the derivation elsewhere on the web site. 

 

The pneumatic resonator is known as a Helmholtz Resonator and he showed that the resonant frequency is 

given by 

 

     
 

 
               

 

'a' is the acoustic velocity and V the volume and this can be any shape. If we substitute the pneumatic 

capacitance 
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Comparing the electrical and pneumatic formulae we have 

 

   
 

   
  

 

 
         

 

  
 

 

 
         

 

 
 

L is now the orifice Inertance Lo 

   
 

 
 

This may be used to analyse acoustic vibrations. 

 

The resistance only serves to dampen the vibrations and has been ignored here. 

 

 

2. Fluid Springs and Dashpots 

 

This tutorial show how analogies may be used to derive the spring rate for a fluid column and the damping 

characteristics of a dashpot. These are important elements in any hydraulic or pneumatic system. 

 
 

The analogous quantities throughout will be as follows. 

 

Pressure (p) - Voltage (V) 

Mass flow (  )  - Current(I or i) 
Mass (m) - Charge (Q) 

 

2.1. Pneumatic Spring 

 

Examples of pneumatic springs are found in suspension systems and seats. Any linear pneumatic actuator 

will have a springiness that should be consider when analysing the possibility of oscillations due to the 

interaction of the mass and the spring. 

 

The following shows the application of part 1 to a pneumatic spring. The diagram shows a volume of gas 

trapped in a cylinder by a piston. The gas pressure is 'p'. If the piston is moved a small distance 'x' the 

pressure rises as the gas is compressed. For rapid movement the compression is adiabatic. 

 

    
 

     
 
              

         
            

        
                 

 

   
      

 

       
 

     

The increase in the force due to the gas pressure is Fp = A(p2 - p1) 

 

Substitute for p2 
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Differentiate with respect to x. 

   

  
      

  

    
 

 

 
 

    
   

 

This indicates that the spring rate depends on the position of the piston but when x = 0 

 
   

  
     

 

  
  

 

This is the pneumatic spring rate kp at the start of the change but may be applied over a range if x <<  1. 

 

The expression is particularly useful when analysing vibrations with small amplitudes. 

 

2.2. Hydraulic Spring 

 

A hydraulic fluid is virtually incompressible and this depends on the bulk modulus K. Only at exceptionally 

high pressures does this become an issue (e.g. in some aircraft undercarriage designs the elasticity of the 

hydraulic fluid is used to produced a measure of springing). The elasticity of the pipes is more likely to be a 

factor in hydraulic circuits. 

 

2.3. Pneumatic Dashpot 

 

Pneumatic dashpots are used on many devices to damp out oscillations. The example shown here was used 

in conjunction with a pressure relief valve. It was found that the valve oscillated up and down at a high 

frequency when relieving air from some systems. This was due to the resonance of the connecting pipe and 

volume interacting with valve. It is interesting to analyse fully why the valve oscillated but in this section we 

will examine the damping characteristics of the dashpot. The purpose of the dashpot was to dampen these 

oscillations. In the original design there was no damping orifice and it was thought that the clearance gap 

between the piston and cylinder would produce damping. Research showed that the damper simply acted as 

a pneumatic spring that added to the steel spring simply determined the resonant frequency. The damping 

orifice made quite a difference. 

 

Basically, when the piston moves up, air is pushed out of the chamber and when the piston moves down, air 

is sucked into the chamber. The pressure produced by the restriction and inertance always acts to oppose the 

motion of the piston and hence dampens the movement. 
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It is assumed that the changes in pressure are adiabatic. This is an accurate assumption for frequencies above 

1 Hz. The pressure inside the dashpot is p and outside is atmospheric pa. The pressure inside is equal with 

the pressure outside when the valve starts to oscillate starting from the rest position xo. The pneumatic or 

pressure force acting on the piston is Fp. 

 

Let us examine the case when the oscillations are small in amplitude. This approach is called a Small 

Perturbation Analysis. Consider the simplified diagram. 

 
The air inside the dashpot has a mass m, volume V, pressure p and temperature T. The characteristic gas law 

gives  pV = mRT 

 

Differentiate with respect to time. 

 
  

  
  

  

  
   

  

  
   

  

  
 

 

                 
  

  
    

  

  
 

It is reasonable to assume that the change in pressure is adiabatic so 

 

  
 

             
 

  

  
 

   

 
 
 

 
 
  

  
 

 

p = pa + δp where δp is the increase in pressure relative to the outside. dp = d(δp) 

The mass flow rate through the orifice is 

   
  

  
  

  

 
 

 

 G is the orifice restriction or resistance. Combining the equations we have 

 

 
  

  
  

  

  
   

  

  
   

  

  
 

 

 
     

  
    

  

  
   

   

 
 
 

 
 
  

  
   

  

 
 

 

 
     

  
    

  

  
 

   

 
 
   

 
 

  

  
    

  

 
 

Note mRT = pV 

 
     

  
    

  

  
   

   

 
 
  

  
    

  

 
 

Note dp = d(δp) 
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It is convenient here to change to Laplace form. 

 
 

 
        

  

 
        

 

   
 

 
  

  

 
         

 

     
 

 
  

  

 
    

      

Note δp Ap  = Fp 

   
 

 
  

  

 
    

      

 

  

 
 

  
    

 
   

  
 

 
    

    

         
 

Pneumatic capacitance was defined as 

  
 

   
 

 

  

 
 

    
    

      
 
 

 
    

    

       
 
  

 
     

    

          
 

Define a time constant as τ = CG  

  

 
 

    
    

        
 

Note V = Ap (  - x)  
  

 
 

       

            
 

 

From the previous section we know that at the mean position the rate of change of force with distance is  

 

   
   

  
  

   

 
 

 

If x is small compared with   
  

 
 

     

       
 

 

The pneumatic force is conveniently defined as 
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 Making the Laplace substitution s becomes jω 

   
       

        
 

 

This shows that at high frequencies  xk F pp  and so behaves as a pneumatic spring with negligible 

damping. At low frequencies 

          

 

In this case the dashpot behaves the same as a viscous damper where force is directly proportional to 

velocity. Substitute v = ω x 

            

 

c is the viscous damping coefficient and c = kp τ 

 
  

 
 

      

        
    

 

  
 

      

      
 

 

 
If this is turned into a complex number we have 

 
 

  
 

 

  
    

 

    
  

From the vector 

 
 

  
  

       

     
           

  

 
  

     

       
 

 

The phase angle between Fp and x is 

        
 

   
  

Energy Dissipation 

 

If the dashpot oscillates harmonically with an amplitude X the damping force is  

 

   
     

       
   

     

       
            

 

For a given set of parameters this may be written 

 

                

The displacement is x = X sin(θ) 
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If we plot Fp against x for a given set of parameters we get a loop and the area within the loop is the work 

done against the pressure and hence the energy dissipated by the dashpot. 

 
For 1 cycle the energy dissipated is 

      
  

 

                
  

 

               
  

 

 

  

                           
 

                        
  

 

 

 

  
   

 
          

 

 
                           

 

  

 

 

             
From the vector we have 

     
 

       
 

 

Substitute 

  
     

       
 

  

The energy dissipated for each cycle is 

  
         

      
 

 

In a viscous damper the energy dissipated is E = c π ω X
2
 

If we equate we can establish an equivalent viscous damping coefficient such that 

 

   
   

      
 

  

Maximum damping will occur at any given frequency when θ = 45
o
 and ω τ = 1 in which case 

 

   
   

 
       

     

 
 

 

 These are the design parameters for a dashpot to produce maximum damping at a given frequency. 
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 CASE STUDY 

 

 A pneumatic dashpot similar to that shown in the previous diagram has the following parameters. 

 

 The volume of the air at the mean position is V = 10 460 mm
3
 and the effective length was 25 mm. 

 The ambient conditions are p = 100 kPa, T = 288 K.  

 The gas constants for air are γ = 1.4 and R = 287 J/kg K. 

 The relationship between pressure drop and mass air flow through the orifice was measured and it was 

found that at low pressure values the pneumatic resistance was reasonably linear with a value of  

 23.8   10
6
 N/ m s. 

 

 Determine the energy lost to damping and the equivalent damping coefficient when the dashpot is 

oscillated at 75 Hz with peak to peak amplitude of 2.35 mm. 

 

 First calculate the pneumatic capacitance of the dashpot. 

 

  
 

   
 

           

           
                   

 

 The time constant is τ = GC = 23.8   10
6
   90.32   10

12 
= 2.151  10

-3 
s 

 

 X = 2.35/2 = 1.175 mm   = 25 mm   hence A = V/   = 418.4   10
-6 

 m
2
 

 

 F = 75 Hz hence ω = 2πf = 471.239 rad/s 

 

 kp = γ p A/   = 1.4  x 100   10
3
   418.4   10

-6 
/0.025 = 2 343 N/m 

 

   = tan
-1

(1/ωτ) = 44.6
o
 

  

  
         

       
 

                                 

                       
              

 

   
   

       
 

            

                       
              

  

 Tests to determine the actual values gave a result quite close to the predicted values. 
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2.4. Hydraulic Dashpot 

 

A typical hydraulic dashpot is a piston in a cylinder with holes allowing the liquid to move from one side of 

the piston to the other. Many variations are possible. 

 
Without derivation, it can be shown that since the force required to shear a Newtonian fluid is directly 

proportional to the rate of shear, then the damping force produced by a hydraulic dashpot is directly 

proportional to the velocity of the piston. F  v.  Velocity v is the first derivative of distance so F  dx/dt 

The basic law of a dashpot is:  

      
  

  
 

c is the damping coefficient (N s/m) 

Changed into Laplace form F(s) = c s x   

Rearranged into a transfer function 

  
 

 
    

 

  
 

 

When the piston is reciprocated harmonically with amplitude X the energy dissipated is  

 

  
    

 
 

Instantaneous power dissipated is 

P = Force   velocity 
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3. Dynamic Stability of Valve and System 

 

The following case prompted the research outlined here but the general principles may be extended to a 

range of valves and situations. A simple spring loaded pressure limiting valve with a flat plate design was 

used to vent air from a vessel and was connected to the vessel by a pipe. It was found that the valve would 

go into violent oscillations at frequencies in excess of 50 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three forces acting on the valve plate: the force of the escaping air Fv, the force of the steel 

spring Fs and the pneumatic damping force due to the pressure of the air in the dashpot Fd. Each of these 

forces varies with distance x. These interact with the valve mass and the pipeline dynamics to produce 

instability. Perturbations in the pressure travel along the pipe at the sonic velocity and are reflected from 

the volume as rarefactions (negative pressure). If the pipe length is resonant at a frequency near to the 

resonant frequency of the valve, they will interact. (Note that at closed ends such as a hydraulic pump, 

the pressure perturbations are reflected as positive pressure). 

 

Research revealed that on part of the operating characteristic the mass flow could increase with the inlet 

pressure decreasing. This gives the device a negative characteristic or restriction. A similar electronic 

device is a tunnel diode used to create microwave oscillations. 

 
Research also revealed that the pneumatic dashpot behaved like a spring and produced negligible 

damping until a damping orifice was added to it. Also the steel spring, having a moving mass, produces 

a force that gets out of phase with movement and decreases with frequency so that it became ineffective. 

Much of the work uncovered has been explained in tutorials (1) and (2). The following gives some 

insight into the stability analysis. 

 

3.1 Dynamic Stability 

 

Valve oscillation has several causes. The main ones are the interaction between the valve mass and spring 

dynamics and the dynamics of the pipe system connected to it. 

 

Water hammer is a phenomenon involving pressure fluctuations moving up and down pipes, usually due to 

the closure or opening of a pipe line valve. You will find information on this in the fluid mechanics tutorials. 

A related phenomenon occurs in hydraulic and pneumatic systems with interaction between the valve and 

the pipe dynamics. 
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When a valve moves, the flow rate through it changes and the pressure in the pipe changes. Pressure changes 

can travel along a pipe and are reflected from closed end as a pressure and from open ends as rarefaction. It 

becomes possible for the pressure and flow rate to get out of phase with each other and with the valve 

position and thus sustain the oscillation of the valve element. 

 

An additional cause is that the possibility of a negative pressure - flow rate characteristic, a well known 

cause of instability. 

 

3.2 Closed Loop Model 

 
Two models are shown. One is based on the relationship between flow rate and valve position and the 

other is based on the relationship between valve movement and the fluid force acting on the valve 

element. If a transfer function is derived for the two blocks and a closed loop transfer function created, 

then a stability analysis can be made. This model may be applied to all manner of valves, hydraulic and 

pneumatic. The dynamics of the pipe line may be determined in many cases by applying electrical 

transmission line theory to it. 

 

Generally, when the resonant frequency of the valve is close to the quarter wave resonant frequency of the 

pipe (or some multiple of the frequency) the valve will be unstable. There will be a 90
o
 phase shift between 

the flow and the pressure (like between current and voltage in an electrical system). 

 

In the following a great simplification is used where the changes in the variables is assumed to be very small 

and so the relationships between them are linearised to the gradients of the functions at the operating point. 

This is called a 'Small Perturbation Analysis' and allows some insight to the onset of instability. Larger 

perturbations may make the system more or less stable. 

 

3.3 Analysis of the Valve Dynamics 

 

When a valve oscillates, the whole system becomes dynamic and surprising things can happen like what 

happens to an ordinary spring which we will examine first. 

 

3.3.1 Dynamic Spring Rate 

 

An ordinary spring has a spring rate ks = ΔF/Δx but the spring coils have a mass and only one end 

moves so some of the mass moves faster than the rest.  

 
When one end is moved harmonically the actual spring rate or dynamic spring rate has been shown to be  
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In a later case study  

ms = 1.46 g and ks = 1.46 N/mm and the plot is shown. This shows that the spring rate can become zero 

or even negative if it is attached to the valve element. 

 

3.3.2 Small Perturbation Method 

 

In this section the analysis is made by assuming that all the changes are small. This is called a small 

perturbation analysis. 

 
We need to consider how the mass flow rate    and force Fv varies with pressure p1 and opening x. 

Fv is the fluid force acting on the valve element due to the pressure and momentum change of the fluid.  

 

These are related by some function. At the operating point the gradients of the functions are C1, C2, C3 

and C4. The graphs are only for illustrative purposes. 

 

 
For a small change we consider that the relationship is linear. Clearly if the changes are large the result 

is different but this method is useful for determining the likelihood of instability occurring.  

 

3.3.3 Valve Impedance and Transfer Functions 

 

Many models use impedance to model the dynamics of the valve and this fits in with the electrical 

analogue. The following could apply to most types of hydraulic and pneumatic valves but a simple flat 

valve will be considered here. The mass flow rate    depends on the opening xo and the pressure drop 
over the element Δp = p1 - p2. 

 

We will consider p2 as constant so 

δΔp = δ p1. 
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3.3.4 Impedance 

The impedance is defined as 

   
   

   
 

 

The change in flow rate will be partly due to the change in opening and partly due to the change in 

pressure so 

               
 

   
   

   
        

   

  
 

 

   

   
       

  

   
 

  

      

This shows that the impedance is negative when 

  

  

   
    

  

The change in the force Fv will be partly due to the change in opening and partly due to the change in 

pressure so 

                    

 

The force 'Fv' is opposed by various forces depending on the design. This could include the force due to 

the steel spring 'Fs', the damping force 'Fd' due to the dashpot and the inertia force 'Fi' due to the mass of 

the element 'M'. 

 
Equating the forces we have 

Fv = Fs + Fd + Fi 

If these change slightly then 

δFv = δFs + δFd + δFi 

The inertia force is defined as  

    
   

   
 

M is the moving mass. 

 

Each of these forces varies with opening so we define the gradients of the functions as a spring rate such 

that 

   
   

  
         

   

  
          

   

  
 

 

               
      

   
            

      

   
 

 In Laplace form this is 
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Equate (3) and (2 ) 

                         
 

                                          
 

  

              
 

  

   
 

Substitute into (1) 

       
    

              
 

  

 

  

If the valve oscillates harmonically with a small amplitude we may substitute s = jω 
 

       
    

              
 

  

 

This is negative when 

   
         

    
  

 
 

   

 

The resonant frequency is 

   
 

 
       

   

  
  

 

 As discussed above, the steel spring rate a function of frequency and the dynamic rate ksd should be 

used. This may give a negative value at the frequency of interest and can greatly increase the probability 

of negative valve impedance. 

 

Negative impedance will occur when the net spring rate is negative. 

 

Many valves have a characteristic that makes the restriction to flow decrease with movement such as poppet 

valves and spool valves. Variable area flow meters (Rotameters) are based on this principle and the floats 

can often oscillate up and down inside the tube due to this. Electronic devices such as tunnel diodes have a 

similar characteristic and are used to generate electronic oscillations. 

 

3.4 Analysis of the Pipeline Dynamics 

 

Consider a pipe connected to volume as shown. The pipe has a length l and bore area A1. The fluid in the 

pipe has inertance L, capacitance C and resistance G1. The analogue circuit is shown. pv is equivalent to Vi 

and p1 is equivalent to Vo.  

 
The circuit impedance viewed from the volume is  

 

Zp = G1 + XL + Xc 
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This is the Lumped Parameters. It was shown in part 1 that for a gas 

 

  
  

  
         

 

 
 

The resistance is less easy to express. 

 

Well established electrical transmission line theory lets us make the analogy that the volume is the same as a 

short circuit in which case the impedance in terms of the Distributed Parameters is 

 

   
   

   
         

  

 
  

  

Consider that a simple valve is placed at the end of the pipe. In this case we will assume that the restriction 

of the valve at the operating point is G2 but of course this could be a complex expression. 

 

3.4.1 Method 1 Lumped Parameters Circuit 

 

 
 

The circuit impedance viewed from the volume is 

        
    

     
 

XL is the inductive reactance and in Laplace form 

XL = sL 

XC is the capacitive reactance and in Laplace form 

   
 

  
 

        

  
  

 
     

       
  

      
 

                       

      
 

The numerator is 

                        
 

Apply the Routh-Hurwitz criteria and the requirements for stable operation are 

 

                  
 

   
 

For a pneumatic system the second criteria reduces to 

   
  

    
  

  

The stabilising factors are a large capacitance and a suitable pipe restriction that depends on the friction 

coefficient of the pipe and the length. 

 

In many instances, there will be an operating point of the valve where the mass flow rate increases even 

when the pressure p1 reduces and this means there is an operating point with a negative G2 and such systems 

are unstable. 
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3.4.2 Method 2 Closed Loop with Distributed Parameters 

 

The volume at the supply end of the pipe is analogous to a closed circuit in electrical theory and well 

established transmission line theory gives the impedance of the line as viewed from that end. Making a 

pneumatic analogy we have the pipe impedance viewed from the volume as: 

 

   
   

   
         

  

 
  

 

Zo is characteristic impedance of the pipe and by analogy is 

 

    
 

 
 

 

 
 

 

L and C are the distributed parameters with negligible restriction (friction). 

We had 

   

   
       

  

   
 

  

      

 

                       

Combine equations (1), (3) and 

   
   

   
 

 Eliminate δp1 and we get the result 
   

  
 

      

      
    

 

This is a transfer function H2 relating the fluid forces on the valve element to the pressure in the pipe.  

 

  
      

      
    

 

It was shown earlier that the relationship between the force and the pressure from examination of the 

pipeline is  
                 

 

The closed loop block diagram is shown. 

 
H1 is the transfer function of the valve and H2 the transfer function of the pipe line. 

The open loop transfer function is: 

                      
      

      
    

Remember in terms of distributed parameters that 

           
  

 
  

  

When ωl/a = π/2, 3π/2. …. this is infinity and when ωl/a = π, 2π, 3π, …. it is zero. 
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If we could plot the Nyquist diagram the system would be unstable if it enclosed the -1 point. Since the 

constants C3 and C4 are difficult to determine this might be difficult to do but we do know that this would 

occur if H1 or H2 is negative and when 

 

i. When ωl/a = π/2, 3π/2 ….  

  
 

         
    
  

 
 

 

ii. When ωl/a = π, 2π, 3π …. 

   
        

 
 

This is a logical result.  

 

Condition (i) corresponds to the pipe being resonant due to being ¼ wave length long or a multiple of this. 

At this condition C3C2/C1 changes sign but C4 being independent of pressure change will remains negative. 

 

Condition (ii) corresponds to the pipe being resonant and ½ wave length long. At this condition the pressure 

variations in the pipe being reflected will cancel the variations being set up by the valve oscillation. The 

component C3C2/C1 vanishes but C4 will remains negative. 

 

 

 

 

 


