
SOLUTIONS C106 THERMODYNAMIC, FLUID AND PROCESS ENGINEERING Year 2004

Q4. In a nuclear power station, heat from the nuclear reactor is transferred by circulating carbon dioxide gas through the reactor and then to the boiler where steam is generated. The steam is used in a Rankine Cycle with superheat where it expands isentropically from 100 bar pressure and 600°C to 7 bar. The exhaust steam is condensed by using it in a district heating scheme and returns as saturated water at 7 bar and is returned to the boiler.

(a) The power output of the turbine is 170 MW. Calculate the rate at which heat is used by the district heating scheme. Draw a block diagram of the system.

(b) The carbon dioxide is cooled from 620oCto 310oC in the boiler. Calculate the mass flow rate of carbon dioxide if the mean specific heat capacity c_p is 1.143 kJ/kg K. Neglect the feed pump work.

BOILER $h_1 = h4$

 $\Phi = m(h_2 - h_1) = 214.54(3624 - 697) = 627960 \text{ kW}$ If the heat lost by the carbon Dioxide is the same then $627960 = m_g c_p (\Delta T)$

 $627960 = 1.143 \text{ m}_{g} (620 - 310) \text{ m}_{g} = 1772 \text{ kg/s}$

These answers do not quite agree with the examiners but are close.